ID: 56021
Autoria:
Eduardo de Rezende Francisco, José Luiz Kugler, Soong Moon Kang, Ricardo Silva, Peter Alexander Whigham.
Fonte:
Revista de Administração de Empresas, v. 59, n. 6, p. 375-378, Novembro-Dezembro, 2019. 4 página(s).
Tipo de documento: Artigo (Inglês)
Ver Resumo
A capacidade das organizações de produzir, coletar, gerenciar, analisar e transformar dados aumentou rapidamente na última década (Delen & Zolbanin, 2018). Isso gerou novos desafios significativos em relação a como os dados podem ser aproveitados para melhorar as decisões de negócios e como esse novo cenário altera os processos e as operações de negócios (Vidgen, Shaw, & Grant, 2017). A adoção generalizada de métodos analíticos avançados (por exemplo, aprendizado de máquina) tem atraído bastante interesse (Gupta, Deokar, Iyer, Sharda, & Schrader, 2018; Vassakis, Petrakis, & Kopanakis, 2018), principalmente porque o armazenamento de dados e os métodos necessários podem ser acessados remotamente por meio de interfaces baseadas na web, como serviços em nuvem. Isso gerou uma crença crescente de que as empresas devem envolver-se ativamente com essa tecnologia para se manterem competitivas. No entanto, esse cenário de corrida da Rainha Vermelha (que pressupõe um desenvolvimento contínuo por parte das empresas) tem um custo, pois a coleta, a curadoria e o gerenciamento de grandes conjuntos de dados requerem experiência e uma equipe dedicada, o que, muitas vezes, consome recursos que não contribuem para as principais atividades do negócio. É preciso considerar também que cientistas de dados e engenheiros de dados, entre outros, cada vez mais exercem um papel relevante dentro das organizações (Davenport & Patil, 2012). Cargos como Chief Data Officer (CDO) e Chief Analytics Officer (CAO) agora são comuns na maioria das organizações.