Do Strategic Behaviors Link Travel Agencies in Brazil? Outros Idiomas

ID:
42328
Resumo:
Information and communication technology improvements have challenged the organized and stable network of airlines, global distribution systems (GDS) and travel agencies. In Brazil, traditional travel agencies have faced significant challenges in maintaining their businesses because airlines have forced disintermediation by cutting commissions and reduced distribution costs by selling their product directly through airline websites. This study explores the existence of strategic groups in the Brazilian travel agency market to elucidate how they interact with GDS and other travel agencies to maintain and improve their market position. A latent class analysis model was applied to a sample of 4,288 travel agency points of sale located in Brazil. The study results identified groups with members that exhibited similar behaviors in their relationships with GDS and other travel agencies. The study findings do not support claims regarding the demise of the travel agency business model.
Citação ABNT:
MADALOZZO, R.; FERNANDES, P. C. Do Strategic Behaviors Link Travel Agencies in Brazil?. Brazilian Administration Review, v. 13, n. 3, p. 1-25, 2016.
Citação APA:
Madalozzo, R., & Fernandes, P. C. (2016). Do Strategic Behaviors Link Travel Agencies in Brazil?. Brazilian Administration Review, 13(3), 1-25.
DOI:
http://dx.doi.org/10.1590/1807-7692bar2016160018
Link Permanente:
http://www.spell.org.br/documentos/ver/42328/do-strategic-behaviors-link-travel-agencies-in-brazil-/i/pt-br
Tipo de documento:
Artigo
Idioma:
Inglês
Referências:
Airlines for America. (n.d.). Monthly oil and jet fuel prices. Retrieved September 21, 2013, from http://airlines.org/data/average-spot-prices/.

Associação Brasileira das Empresas Aéreas. (n.d.). Outlook 2013. Retrieved May 21, 2014, from http://abear.com.br/uploads/arquivos/dados_e_fatos_arquivos_eng/Outlook_2013_English_final.pdf.

Bassi, F. (2013). Analyzing markets within the latent class approach: an application to the pharm sector. Applied Stochastic Models in Business and Industry, 29(3), 199-207. http://dx.doi.org/10.1002/asmb.1910.

Beaujean, A. A. (2014). Latent variable modeling using R: a step-by-step guide. New York: Routledge Taylor and Francis Group.

Bhatnagar, A.; Ghose, S. (2004). A latent class segmentation analysis of e-shoppers. Journal of Business Research, 57(7), 758-767. http://dx.doi.org/10.1016/S0148-2963(02)00357-0.

Biemer, P. P. (2011). Latent class analysis of survey error. New Jersey: Willey.

Buhalis, D. (2000). Distribution channels in the changing travel. International Journal of Tourism Research, 2(5), 357-359. http://dx.doi.org/10.1002/1522-1970(200009/10)2:5<357::AIDJTR233>3.0.CO;2-B.

Cento, A. (2009). The airline industry: challenges in the 21st century. Berlin: Springer-Physica-Verlag HD.

Chao, C.; Chen, H.; Yeah, T. (2015). A comprehensive relationship marketing model between airlines and travel agencies: the case of Taiwan. Journal of Air Transport Management, (47), 20-31. http://dx.doi.org/10.1016/j.jairtraman.2015.03.015.

Cheung, R.; Lam, P. (2009). How travel agency survive in e-business world? Communications of the IBIMA, (10), 85-92. Retrieved from http://www.ibimapublishing.com/journals/CIBIMA/volume10/v10n11.pdf.

Collins, L. M.; Lanza, S. T. (2010). Latent class and latent transition analysis. New Jersey: Willey.

Cullmann, A. (2012). Benchmarking and firm heterogeneity: a latent class analysis for German electricity distribution companies. Empirical Economics, 42(1), 147-169. http://dx.doi.org/10.1007/s00181-010-0413-4.

Czepiel, J. A. (1992). Competitive marketing strategy. Englewood Cliffs: Prentice Hall.

Díaz, E.; Martín-Consuegra, D. (2016). A latent class segmentation analysis of airlines based on website evaluation. Journal of Air Transport Management, (55), 20-40. http://dx.doi.org/10.1016/j.jairtraman.2016.04.007.

Duliba, K.; Kauffman, R.; Lucas, H. (2001). Appropriating value from computerized reservation system ownership in the airline industry. Organization Science, 12(6), 702-728. http://dx.doi.org/10.1287/orsc.12.6.702.10087.

Figueiredo, P. N.; Gomes, S.; Farias, R. (2010). Capacidade tecnológica inovadora em empresas do setor turístico: um estudo dos hotéis na cidade do Rio de Janeiro durante o período 1990-2008. Revista de Administração Pública, 44(5), 1139-1170. http://dx.doi.org/10.1590/S003476122010000500007.

Granados, N. F.; Kauffman, R. J.; King, B. (2008). How has electronic travel distribution been transformed?A test of the theory of newly vulnerable markets. Journal of Management Information Systems, 25(2), 73-96. http://dx.doi.org/10.2753/MIS0742-1222250204.

Greene, W. H.; Hensher, D. A. (2013). Revealing additional dimensions of preference heterogeneity in a latent mixed multinomial logit model. Applied Economics, 45(14), 1897-2901. http://dx.doi.org/10.1080/00036846.2011.650325.

International Air Transport Association. (2015). Economic performance of the airline industry. December 10. Retrieved March 15, 2016, from https://www.iata.org/whatwedo/Documents/economics/IATA-Economic-Performance-of-theIndustry-end-year-2015-report.pdf.

International Air Transport Association. (n.d.). Jet fuel price development. Retrieved September 21, 2013, from http://www.iata.org/publications/economics/fuel-monitor/Pages/pricedevelopment.aspx.

Iordache, C.; Voiculet, A. (2010). Prospects of computer – assisted booking and global distribution systems. Young Economists' Journal/Tinerilor Economisti, 8(14), 83-92.

Juman, D. (2011). Latin America: navigating the emerging online travel marketplace - research highlights. April. Retrieved from http://www.travelfocus.cl/pdfupload/online_lat_am.pdf.

Lago, R.; Cancellier, E L P de L. (2005). Agências de viagem: desafios de um mercado em reestruturação. Revista Turismo - Visão e Ação, 7(3), 495-502. http://dx.doi.org/10.14210/rtva.v7n3.p507-514.

Marin, A. (2004). Tecnologia da informação nas agências de viagem: em busca da produtividade e do valor agregado. São Paulo. Aleph.

McDonald, M. (2007). Airlines differ on fate of CRS Code of Conduct. ATW Online. April 30. Retrieved September 21, 2013, from http://atwonline.com/operations/Airlines-differ-fate-crs-code-conduct.

Murthi, B. P. S.; Rasheed, A.; Goll, I. (2013). An empirical analysis of strategic groups in the airline industry using latent class regressions. Managerial and Decision Economics, 34(2), 59-73. http://dx.doi.org/10.1002/mde.2574.

Pereira, A. (1987). Breve história da aviação comercial brasileira. Rio de Janeiro, Brasil: Editora Europa Gráfica.

Raymond, L.; Bergeron, F. (1997). Global distribution systems: a field study of their use and advantages in travel agencies. Journal of Global Information Management, 5(4), 23-32. http://dx.doi.org/10.4018/jgim.1997100103.

Sepúlveda, R. A. (2003). Contribuciones al análisis de clases latentes en presencia de dependencia local. (Tesis doctoral). Departamiento de Estatística, Universidad de Salamanca, Salamanca, España.

Tein, J. Y.; Coxe, S.; Cham, H. (2013). Statistical power to detect the correct number of classes in latent profile analysis. Structural Equation Modeling, 20(4), 640-657. http://dx.doi.org./10.1080/10705511.2013.824781.

Van Vleck, J. (2013). Empire of the air: aviation and the American ascendancy. Cambridge, MA: Harvard University Press.

Abou-Shouk, M.; Lim, W. M.; Megicks, P. (2016). Using competing models to evaluate the role of environmental pressures in ecommerce adoption by small and medium sized travel agents in a developing country. Tourism Management, v. 52, p. 327-399. http://dx.doi.org/10.1016/j.tourman.2015.07.007.

Berne, C.; Garcia-Gonzalez, M.; Mugica, J. (2012). How ICT shifts the power balance of tourism distribution channels. Tourism Management, 33(1), 205-214. http://dx.doi.org/10.1016/j.tourman.2011.02.004.