Assessment of the “Disrupt-O-Meter” model by ordinal multicriteria methods Outros Idiomas

The objective of this article is to explore a potential diagnostic model, called “Disrupt-O-Meter”, about the Christensen's disruptive innovation theory. The diagnostic model was analyzed under multi-criteria decision aid (MCDA) methods. This diagnosis presents a typical data structure of multi-criteria ordinal problems. Different alternatives were evaluated under a set of criteria, using a scale of ordinal preferences. The steps of a MCDA problem were followed. The chosen methods were the Borda, the Condorcet and the Probabilistic Composition of Preferences (CPP). This article used a database from other research, about 3D printing technology startups. The results showed the best discrimination power by the CPP method, revealing the business category with the most disruptive potential, among other alternatives.
Citação ABNT:
GAVIÃO, L. O.; FERRAZ, F. T.; LIMA, G. B. A.; SANT’ANNA, A. P. Assessment of the “Disrupt-O-Meter” model by ordinal multicriteria methods. Innovation and Management Review, v. 13, n. 4, p. 305-314, 2016.
Citação APA:
Gavião, L. O., Ferraz, F. T., Lima, G. B. A., & Sant’anna, A. P. (2016). Assessment of the “Disrupt-O-Meter” model by ordinal multicriteria methods. Innovation and Management Review, 13(4), 305-314.
Link Permanente:
Tipo de documento:
Danneels, E. (2004). Disruptive technology reconsidered: A critique and research agenda. Journal of Product Innovation Management, 21(4), 246-258.

Dyer, J. H.; Gregersen, H. B.; Christensen, C. (2008). Entrepreneurial behaviors, opportunity recognition, and the origins of innovative ventures. Strategic Entrepreneurship Journal, 2(4), 317-338. http://dx.doi. org/10.1002/sej.59

Teece, D. (1993). Profiting from technological innovation: Implications for integration, collaboration, licensing and public policy. Research Policy, 22(2), 112-113.

Arrow, K. (1951). Individual values and social choice. pp. 24. Nueva York: Wiley.

Bouyssou, D. (1986). Some remarks on the notion of compensation in MCDM. European Journal of Operational Research, 26(1), 150-160.

Christensen, C. M. (1997). The innovator’s dilemma: The revolutionary book that will change the way you do business. Collins Business Essentials.

Christensen, C. M. (2006). The ongoing process of building a theory of disrup-tion. Journal of Product Innovation Management, 23(1), 39-55.

Christensen, C.; Anthony, S.; Roth, E. A. (2013). Seeing what’s next: Using the theories of innovation to predict industry change. Harvard Business Press.

Christensen, C.; Raynor, M. (2013). The innovator’s solution: Creating and sustaining successful growth. Harvard Business Review Press.

Cohan, P. S. (2000). The dilemma of the “‘innovator’s dilemma”’: Clayton Chris-tensen’s management theories are suddenly all the rage, but are they ripe for disruption. Industry Standard, 10, 2000.

Doering, D. S.; Parayre, R. (2000). Identification and assessment of emerging technologies. In G. S. Day, P. J. H. Schoemaker, & R. E. Gunther (Eds.), Wharton on managing emerging technologies (p. 75). Hoboken, New Jersey: John Wiley and Sons Inc.

Garcia, P. A. de. A.; Sant’Anna, A. P. (2015). Vendor and logistics provider selection in the construction sector: A probabilistic preferences composition approach. Pesquisa Operacional, 35(2), 363-375.

Giglierano, J.; Vitale, R.; McClatchy, J. J. (2011). Business development in the early stages of commercializing disruptive innovation: Considering the implications of Moore’s life cycle model and Christensen’s model of disruptive innovation. Innovative Marketing, 7(2), 29-39.

Gomes Junior, S. F.; Soares de Mello, J. (2007). Emprego de métodos ordinais multicritério na análise do campeonato mundial de fórmula 1. Simpósio de Pesquisa Operacional E Logística Da Marinha, 10.

Govindarajan, V.; Kopalle, P. K. (2006). The usefulness of measuring disruptiveness of innovations ex post in making ex ante predictions. Journal of Product Innovation Management, 23(1), 12-18.

Grando, N. (2012). Empreendedorismo inovador: como criar startups de tecnologia no Brasil. Editora Évora.

Hahn, F.; Jensen, S.; Tanev, S. (2014). Disruptive innovation vs disruptive technology: The disruptive potential of the value propositions of 3D printing technology start-ups. Technology Innovation Management Review, 4(12)

Hair, J. F.; Black, W. C.; Babin, B. J.; Anderson, R. E.; Tatham, R. L. (2006). Multivariate data analysis (Vol. 6) Upper Saddle River, NJ: Pearson Prentice Hall.

Kaltenecker, N.; Huesig, S.; Hess, T.; Dowling, M. (2013). The disruptive potential of software as a service: Validation and application of an ex-ante methodology.

Keller, A.; Hüsig, S. (2009). Ex ante identification of disruptive innovations in the software industry applied to web applications: The case of Microsoft’s vs. Google’s office applications. Technological Forecasting and Social Change, 76(8), 1044-1054.

Kendall, M. G. (1970). Rank correlation methods. 4 ed. London: Griffin.

Klenner, P.; Hüsig, S.; Dowling, M. (2013). Ex-ante evaluation of disruptive susceptibility in established value networks - When are markets ready for disruptive innovations? Research Policy, 42(4), 914-927.

Moshkovich, H. M.; Mechitov, A. I. (2013). Verbal decision analysis: Foun-dations and trends. Advances in Decision Sciences.

Oliveira, E. de.; de Mello, J. C. C. B. S.; Pereira, C. R.; de Barros Machado, T.; Alves, A. M.; Ramos, T. G. (2015). Aplicação de métodos multicritério ordinais em dados de produção agrícola, para avaliação da sustentabilidade. Interciencia, 40(7), 492-496.

Paap, J.; Katz, R. (2004). Anticipating disruptive innovation. Research- Technology Management, 47(5), 13-22.

Pomerol, J. C.; Barba-Romero, S. (2012). Multicriterion decision in man-agement: Principles and practice. (Vol. 25) New York: Springer.

R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Roy, B.; Bouyssou, D. (1993). Aide multicritère à la décision: méthodes et cas. Paris: Economica.

Sant’Anna, A. P. (2002). Aleatorizada e composição de medidas de preferência. Pesquisa Operacional, 22(1), 87-103. S0101-74382002000100006

Sant’Anna, A. P. (2015). Probabilistic composition of preferences. In Theory and applications. New York: Springer.

Sant’Anna, A. P.; Conde, F. Q. (2011). Probabilistic comparison of call centres in a group decision process. International Journal of Management and Decision Making, 11(5-6), 417-437.

Sant’Anna, A. P.; Martins, E. F.; Lima, G. B. A.; Fonseca, R. A. D. (2015). Beta distributed preferences in the comparison of failure modes. Procedia Computer Science, 55, 862-869.

Sant’Anna, A. P.; Meza, L. A.; Ribeiro, R. O. A. (2014). Probabilistic composition in quality management in the retail trade sector. International Journal of Quality & Reliability Management, 31(6), 718-736.

Sant’Anna, A. P.; Soares de Mello, J. C. C. B. (2012). Validating rankings in soccer championships. Pesquisa Operacional, 32(2), 407-422.

SEBRAE. (2016). O que é uma startup? Retrieved from,616913074c0a3410VgnVCM1000003b74010aRCRD

Stoiciu, A.; Szabo, E.; Totev, M.; Wittmann, K.; Hampl, N. (2014). Assessing the disruptiveness of new energy technologies - An ex-ante perspective. Viena: WU Vienna University of Economics and Business.

Tellis, G. J. (2006). Disruptive technology or visionary leadership? Journal of Product Innovation Management, 23(1), 34-38.

Anthony, S. D.; Johnson, M. W.; Sinfield, J. V.; Altman, E. J. (2008). The innovator’s guide to growth: Putting disruptive innovation to work. Harvard Business Press.