Conceito e Teoria de Big Data Outros Idiomas

ID:
44503
Resumo:
O termo Big Data está sendo amplamente utilizado por empresas e pesquisadores que consideram suas funcionalidades ou aplicações relevantes para criar valor e inovação empresarial. No entanto, algumas perguntas surgem sobre o que é este fenômeno e, mais precisamente, como ele ocorre e em que condições ela pode criar valor e inovação nos negócios. Em nossa opinião, a falta de profundidade relacionada com os princípios envolvidos do Big Data e a própria ausência de uma definição conceitual, tornou difícil responder a estas questões que serviram de base para nossa pesquisa. Para responder a estas perguntas fizemos um estudo bibliométrico e uma extensa revisão da literatura. Os estudos bibliométricos foram realizadas com base em artigos e citações da base Web of Knowledge. O principal resultado da nossa pesquisa é o fornecimento de uma definição conceitual para o termo Big Data. Além disso, propomos que os princípios descobertos podem contribuir com outras pesquisas que pretendem investigar a criação de valor por Big Data. Finalmente propomos que a criação de valor por meio do uso do Big Data deve ser vista à luz da Visão Baseada em Recursos, pois essa é a principal teoria usada para discutir esse tema.
Citação ABNT:
MAZIERI, M.; SOARES, E. D. Conceptualization and Theorization of the Big Data . International Journal of Innovation, v. 4, n. 2, p. 23-41, 2016.
Citação APA:
Mazieri, M., & Soares, E. D. (2016). Conceptualization and Theorization of the Big Data . International Journal of Innovation, 4(2), 23-41.
DOI:
http://dx.doi.org/10.5585/iji.v4i2.91
Link Permanente:
http://www.spell.org.br/documentos/ver/44503/conceito-e-teoria-de-big-data/i/pt-br
Tipo de documento:
Artigo
Idioma:
Inglês
Referências:
Andrea De Mauro, M. G. (2014). What is Big Data?A Consensual Definition and a Review of Key Research Topics. http://doi.org/10.13140/2.1.2341.5048

Baaziz, A.; Quoniam, L. (2013). How to use Big Data technologies to optimize operations in Upstream Petroleum Industry. Journal IJI,(eISSN:2318-9975), 1(1), 19-25. http://doi.org/10.5585/iji.v1i1.4.

Ballard, C.; Compert, C.; Jesionowski, T.; Milman, I.; Plants, B.; Rosen, B.; Redbooks, I. B. M. (2014). Information Governance Principles and Practices for a Big Data Landscape. IBM Redbooks.

Barney, J. (1991). Firm Resources and Sustained Competitive Advantage. Journal of Management, 17(1), 99-120. http://doi.org/10.1177/014920639101700108

Beyer, M. (2011). Gartner says solving “big data”challenge involves more than just managing volumes of data. Gartner. Archived from the Original on, 10.

Big Data Research - Accenture. (2016). Retrieved January 12, 2016, from https://www.accenture.com/us-en/insight-big-dataresearch.aspx

Big data: The next frontier for innovation, competition, and productivity | McKinsey & Company. (2014). Retrieved December 16, 2015, from http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation.

Boyd, Danah.; Crawford, K. (2012). Critical Thatstions for Big Data. Information, Communication & Society, 15(5), 662-679. http://doi.org/10.1080/1369118X.2012.678878

Bregonje, M. (2005). Patents: A unithat source for scientific technical information in chemistry related industry? World Patent Information, 27(4), 309-315.

Brynjolfsson, E.; McAfee, A. (2014). The second machine age: work, progress, and prosperity in a time of brilliant technologies. WW Norton & Company.

Buhl, P. D. H. U.; Röglinger, D. M.; Moser, D. K. F.; Heidemann, D. J. (2013). Big Data. Business & Information Systems Engineering, 5(2), 65-69. http://doi.org/10.1007/s12599-013-0249-5

Chaudhuri, S.; Dayal, U.; Narasayya, V. (2011). An overview of business intelligence technology. Communications of the ACM, 54(8), 88-98.

Chen, H.; Chiang, R. H.; Storey, V. C. (2012a). Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 36(4), 1165-1188.

Chen, H.; Chiang, R. H.; Storey, V. C. (2012b). Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 36(4), 1165-1188.

Clemmensen, L.; Hastie, T.; Witten, D.; Ersbøll, B. (2011). Sparse discriminant analysis. Technometrics, 53(4).

Cukier, K.; Mayer-Schoenberger, V. (2013). Rise of Big Data: How it’s Changing the Way We Think about the World, The. Foreign Affairs, 92(28).

Davenport, T. H.; Harris, J. G. (2007). Competing on Analytics: The New Science of Winning. Harvard Business Press.

Dean, J.; Ghemawat, S. (2008). MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM, 51(1), 107-113. http://doi.org/10.1145/1327452.1327492

Demirkan, H.; Delen, D. (2013). Leveraging the capabilities of service-oriented decision support systems: Putting analytics and big data in cloud. Decision Support Systems, 55(1), 412-421.

Enzmann, D. R.; Schomer, D. F. (2013). Analysis of Radiology Business Models. Journal of the American College of Radiology, 10(3), 175-180. http://doi.org/10.1016/j.jacr.2012.09.001

Fleming, L.; Sorenson, O. (2001). Technology as a complex adaptive system: evidence from patent data. Research Policy, 30(7), 1019-1039. http://doi.org/10.1016/S0048-7333(00)00135-9

Flor, N. V.; Maglio, P. P. (2004). Modeling business representational activity online: A case study of a customer-centered business. KnowledgeBased Systems, 17(1), 39-56. http://doi.org/10.1016/j.knosys.2003.08.011

George, G.; Haas, M. R.; Pentland, A. (2014). Big Data and Management. Academy of Management Journal, 57(2), 321-326. http://doi.org/10.5465/amj.2014.4002

Grant, R. M. (1996). Toward a knowledge‐based theory of the firm. Strategic Management Journal, 17(S2), 109-122. http://doi.org/10.1002/smj.4250171110

Hilbert, M.; López, P. (2011). The World’s Technological Capacity to Store, Communicate, and Compute Information. Science, 332(6025), 60-65. http://doi.org/10.1126/science.1200970

Işık, Ö.; Jones, M. C.; Sidorova, A. (2013). Business intelligence success: The roles of BI capabilities and decision environments. Information & Management, 50(1), 13-23. http://doi.org/10.1016/j.im.2012.12.001

Jewell, D.; Barros, R. D.; Diederichs, S.; Duijvestijn, L. M.; Hammersley, M.; Hazra, A.; Redbooks, I. B. M. (2014). Performance and Capacity Implications for Big Data. IBM Redbooks.

Joseph, J. H.; Bush, R.; Ortinau, D. (2008). Marketing Research. McGraw-Hill Companies, Incorporated.

Kogut, B.; Zander, U. (1992). Knowledge of the Firm, Combinative Capabilities, and the Replication of Technology. Organization Science, 3(3), 383-397. http://doi.org/10.1287/orsc.3.3.383

Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META Group Research Note, (6).

Lavalle, S. (2011). Big Data, Analytics and the Path From Insights to Value. Retrieved from http://sloanreview.mit.edu/article/big-dataanalytics-and-the-path-from-insights-to-value/

Machado, M. P. (2004). A consistent estimator for the binomial distribution in the presence of “incidental parameters”: an application to patent data. Journal of Econometrics, 119(1), 73-98. http://doi.org/10.1016/S0304-4076(03)00156-8

Manyika, J.; Chui, M.; Brown, B.; Bughin, J.; Dobbs, R.; Roxburgh, C.; Byers, A. (2011). Big data: The next frontier for innovation, competition, and productivity. Retrieved from http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_fro ntier_for_innovation

Manyika, J.; Chui, M.; Brown, B.; Bughin, J.; Dobbs, R.; Roxburgh, C.; others. (2013). Big data: The next frontier for innovation, competition, and productivity. 2011, McKinsey Global Institute.

Martínez-Román, J. A.; Gamero, J.; Tamayo, J. A. (2011). Analysis of innovation in SMEs using an innovative capability-based non-linear model: A study in the province of Seville (Spain). Technovation, 31(9), 459-475. http://doi.org/10.1016/j.technovation.2011.05.005.

McAfee, A.; Brynjolfsson, E. (2012). Big data: the management revolution. Harvard Business Review, (90), 60-6.

McAfee, A.; Brynjolfsson, E.; Davenport, T. H.; Patil, D.; Barton, D. (2012). Big data. The Management Revolution. Harvard Bus Rev, 90(10), 61-67.

Nelson, R. R. (1982). The Role of Knowledge in R&D Efficiency. The Quarterly Journal of Economics, 97(3), 453-470. http://doi.org/10.2307/1885872

Nelson, R. R.; Winter, S. G. (2009). An Evolutionary Theory of Economic Change. Harvard University Press.

OECD, & Eurostat. (2005). Oslo Manual. OECD Publishing. Retrieved from http://www.keepeek.com/Digital-AssetManagement/oecd/science-and-technology/oslomanual_9789264013100-en#page1.

Prior, D. D. (2013). Supplier representative activities and customer perceived value in complex industrial solutions. Industrial Marketing Management, 42(8), 1192-1201. http://doi.org/10.1016/j.indmarman.2013.03.015.

Quintero, D.; Casali, D de S.; Lima, M. C.; Szabo, I. G.; Olejniczak, M.; Mello, T. R. de; Redbooks, I. B. M. (2015). IBM Software Defined Infrastructure for Big Data Analytics Workloads. IBM Redbooks.

Rawlings, N. D.; Waller, M.; Barrett, A. J.; Bateman, A. (2013). MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, gkt953. http://doi.org/10.1093/nar/gkt953

Silveira, M.; Marcolin, C. B.; Freitas, H. M. R. (2016). Uso Corporativo do Big Data: Uma Revisão de Literatura. Revista de Gestão e Projetos - GeP, 6(3), 44-59. http://doi.org/10.5585/gep.v6i3.369

Taurion, C. (2013). Big Data. Brasport.

Teece, D.; Pisano, G. (1994). The Dynamic Capabilities of Firms: an Introduction. Industrial and Corporate Change, 3(3), 537-556. http://doi.org/10.1093/icc/3.3.537-a

Tian, L.; Zhiping, Y.; Zhengyin, H. (2013). The Large Aperture Optical Elements patent search system based on Domain Knowledge Organization System. World Patent Information, 35(3), 209-213. http://doi.org/10.1016/j.wpi.2013.04.007

Tien, J. M. (2013). Big Data: Unleashing information. Journal of Systems Science and Systems Engineering, 22(2), 127-151. http://doi.org/10.1007/s11518-013-5219-4

Vasarhelyi, M. A.; Halper, F. B. (1991). The continuous audit of online systems. Auditing: A Journal of Practice & Theory, 10(1), 110-125.

Volpato, T.; Rufino, R. R.; Dias, J. W. (2014). BIG DATA-TRANSFORMANDO DADOS EM DECISÕES. Retrieved from http://web.unipar.br/~seinpar/2014/artigos/graduacao/Tiago_Volpato.pdf.

Waller, M. A.; Fawcett, S. E. (2013). Click Here for a Data Scientist: Big Data, Predictive Analytics, and Theory Development in the Era of a Maker Movement Supply Chain. Journal of Business Logistics, 34(4), 249-252.

Williamson, O. E. (1981). The Economics of Organization: The Transaction Cost Approach. The American Journal of Sociology, v. 87, p. 548-577.

Xindong Wu; Xingquan Zhu; Gong-Qing Wu; Wei Ding. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97-107. http://doi.org/10.1109/TKDE.2013.109

Yugue, R. T.; Maximiano, A. C. A. (2013). Understanding and Managing Project Complexity. Revista de Gestão E Projetos - eISSN: 2236-0972, 4(1), 01-22. http://doi.org/10.5585/gep.v4i1.109