GetHFData: A R package for downloading and aggregating high frequency trading data from Bovespa Outros Idiomas

ID:
45070
Resumo:
This paper introduces GetHFData, a R package for downloading, importing and aggregating high frequency trading data from the Brazilian financial market. Based on a set of user choices, the package GetHFData will download the required files directly from Bovespa’s ftp site and aggregate the financial data. The main objective of the publication of this software is to facilitate the computational effort related to research based on this large financial dataset and also to increase the reproducibility of studies by setting a replicable standard for data acquisition and processing. In this paper we present the available functions of the software, a brief description of the Brazilian market and several reproducible examples of usage.
Citação ABNT:
PERLIN, M.; RAMOS, H. GetHFData: A R package for downloading and aggregating high frequency trading data from Bovespa. Revista Brasileira de Finanças, v. 14, n. 3, p. 443-478, 2016.
Citação APA:
Perlin, M., & Ramos, H. (2016). GetHFData: A R package for downloading and aggregating high frequency trading data from Bovespa. Revista Brasileira de Finanças, 14(3), 443-478.
Link Permanente:
http://www.spell.org.br/documentos/ver/45070/gethfdata--a-r-package-for-downloading-and-aggregating-high-frequency-trading-data-from-bovespa/i/pt-br
Tipo de documento:
Artigo
Idioma:
Inglês
Referências:
Andersen, T. G.; Bollerslev, T. (1997). Intraday periodicity and volatility persistence in financial markets. Journal of empirical finance, 4(2), 115-158.

Andersen, T. G.; Bollerslev, T.; Diebold, F. X. (2007). Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility. The review of economics and statistics, 89(4), 701-720.

Andersen, T. G.; Bollerslev, T.; Diebold, F. X.; Labys, P. (2003). Modeling and forecasting realized volatility. Econometrica, 71(2), 579-625.

Araújo, A. C. D.; Ávila, A. M. (2015). Estimação da volatilidade percebida futura por meio de combinação de projeções. XV Encontro Brasileiro de Finanças.

Araújo, A.; Mantini, A. (2013). High frequency trading - abordagem clássica para análise de preço-volume em uma nova microestrutura de mercado. Anais dos Seminários em Administração SEMEAD.

Araújo, G. S.; Barbedo, C. H. D. S.; Vicente, J. V. M. (2014). The adverse selection cost component of the spread of brazilian stocks. Emerging Markets Review, 21, 21-41.

Araújo, R. D. A.; Oliveira, A. L.; Meira, S. (2015). A hybrid model for high-frequency stock market forecasting. Expert Systems with Applications, 42( 8), 4081-4096.

Back, K; Pedersen, H. (1998). Long-lived information and intraday patterns. Journal of financial markets, 1(3), 385-402.

Barbedo, C. H.; Camilo-Da-Silva, E.; Leal, R. P. (2007). Probability of information-based trading, intraday liquidity and corporate governance in the Brazilian stock market. Working paper.

Barndorff-Nielsen, O. E; Shephard. (2002). Econometric analysis of realized volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society Series B, 64(2), 253-280.

Biage, M.; Costa, N.; Goulart, M. (2010). O efeito dia de vencimento no mercado de opções da bovespa revisitado. Revista Economia, 11(1), 53-96.

Block, A. S.; Ceretta, P. S.; Costa, A. (2015). Linear and nonlinear association measures with intraday /high frequency data for all ibovespa stocks. Revista Eletrônica de Estratégia 8 Negócios, 8(3), 171-186.

Borges, B.; Caldeira, J.; Ziegelmann, F. (2015). Selection of minimum variance portfolio using intraday data: An empirical comparison among different realized measures for BM&FBovespa data. Brazilian Review of Econometrics, 35(1), 23-46.

Boudt, K.; Cornelissen, J.; Payseur, S.; Nguyen, G.; Schermer, M. (2014). high frequency: Tools For High frequency Data Analysis. R package version 0.4.

Brownlees, C. T. and Gallo, G. M. (2006). Financial econometric analysis at ultra-high frequency: Data handling concerns. Computational Statistics 8 Data Analysis, 51 (4), 2232-2245.

Caetano, M. A. L.; Yoneyama, T. (2007). Characterizing abrupt changes in the stock prices using a wavelet decomposition method. Physica A: Statistical Mechanics and its Applications, 383(2), 519- 526.

Cajueiro, D. O.; Tabak, B. M. (2007). Characterizing bid-ask prices in the Brazilian equity market. Physica A: Statistical Mechanics and its Applications, 373, 627-633.

Cappa, L. and Pereira, P. (2009). Modeling the volatility of petrobras returns using high frequency data. 31 Meeting of the Brazilian Econometric Society.

Carvalho, M.; Freire, M.A.; Medeiros, M. C.; Souza, L. R. (2006). Modeling and forecasting the volatility of brazilian asset returns - a realized variance approach. Revista Brasileira de Finanças, 4(1), 321-343.

Casarin, F. (2011). Comunalidade na liquidez : evidências no mercado de capitais brasileiro. Master's thesis. Postgraduate Program in Administration - Federal University of Santa Maria.

Ceretta, P. S.; de Barba, F. G.; Vieira, K. M.; Casarin, F. (2011). Intraday volatility forecasting: Analysis of alternative distributions. Revista Brasileira de Finanças, 9(2), 209-227.

Corsi, F.; Pirino, D.; Reno, R. (2010). Threshold bipower variation and the impact of jumps on volatility forecasting. Journal of Econometrics, 159(2), 276-288.

Cortines, A.; Riera, R. (2007). Non-extensive behavior of a stock market index at microscopic time scales. Physica A: Statistical Mechanics and its Applications, 377(1), 181-192.

De Jong, F.; Rindi, B. (2009). The microstructure of financial markets. Cambridge University Press.

Easley, D.; O'hara, M. (1987). Price, trade size, and information in securities markets. Journal of Financial economics, 19(1), 69-90.

Engle, R. F.; Russell, J. R. (1998). Autoregressive conditional duration: a new model for irregularly spaced transaction data. Econometrica, p. 1127-1162.

Fleming, J.; Kirby, C.; Ostdiek, B. (2003). The economic value of volatility timing using realized volatility. Journal of Financial Economics, 67(3), 473-509.

Fonseca, N. F.; Lamounier, W. M.; Bressan, A. A. (2012). Abnormal returns in the ibovespa using models for high-frequency data. Revista Brasileira de Finanças, 10(2), 243-265.

Garcia, M. G. P.; Medeiros, M. C.; de Luna, F. E.; Santos, A. (2014). Economic gains of realized volatility in the Brazilian stock market. Revista Brasileira de Finanças, 12(3), 319.

Garcia, M.; Santos, F.; Medeiros, M. (2016). The high frequency impact of macroeconomic announcements in the Brazilian futures markets. Brazilian Review of Econometrics, Forthcoming.

Glosten, L. R.; Milgrom, P. R. (1985). Bid, ask and transaction prices in a specialist market with heterogeneously informed traders. Journal of financial economics, 14(1), 71-100.

Goodhart, C. A.; O'Hara, M. (1997). High frequency data in financial markets: Issues and applications. Journal of Empirical Finance, 4(2), 73-114.

Groβ-Klumann, A.; Hautsch, N. (2011). When machines read the news: Using automated text analytics to quantify high frequency news-implied market reactions. Journal of Empirical Finance, 18(2), 321-340.

Hasbrouck, J. (2007). Empirical market microstructure. Oxford University Press New York.

Horta, E. D. O.; Ziegelmann, F. A. (2011). Dynamics of financial returns densities: A functional approach applied to the Bovespa intraday index. XI Encontro Brasileiro de Finanças.

Jabbur, E.; Silva, E.; Castilho, D.; Pereira, A.; Brandão, H. (2014). Design and evaluation of automatic agents for stock market intraday trading. Proceedings of the 2014 IEEE/WIG/ ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)- Volume 03, p. 396-403.

Junior, M. W.; Pereira, P. V. (2011). Modeling and forecasting of realized volatility - evidence from Brazil. Brazilian Review of Econometrics, 31(2), 315-337.

Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica: Journal of the Econometric Society, p. 1315-1335.

Madhavan, A. (2000). Market microstructure: A survey. Journal of Financial Markets, 3(3), 205-258.

Maluf, Y. S.; Otiniano, C. E. G. (2014). Modelagem das chegadas de ordens de oferta via processo de Hawkes. XIV Encontro Brasileiro de Finanças.

Marquezin, C. L.; De Mattos, L. B. (2014). Liquidity cost of future contract to BM&FBovespa fat cattle. Revista de Administração Mackenzie, 15(4).

Martins, O. S.; Paulo, E. (2014). Information asymmetry in stock trading, economic and financial characteristics and corporate governance in the brazilian stock market. Revista Contabilidade 8 Finanças, 25(64), 33-45.

Moreira, J. M. D. S.; Lemgruber, E. F. (2004). O uso de dados de alta frequência na estimação da volatilidade e do valor em risco para o Ibovespa. Revista Brasileira de Economia, 58(1), 100-120.

Neto, J. C. D. C. O.; de Medeiros, O. R.; de Queiroz, T. B. (2012). Corporate governance and information incorporation speed: Leadlag between the IGC and IBRX. Revista Brasileira de Finanças, 10(1), 149.

Perlin, M. (2013). Os efeitos da introdução de agentes de liquidez no mercado acionário brasileiro (the effects of the introduction of market makers in the Brazilian equity market). Revista Brasileira de Finanças, 11(2), 2-81.

Perlin, M.; Brooks, C.; Dufour, A. (2014). On the performance of the tick test. The Quarterly Review of Economics and Finance, 54(1), 42-50.

Pontuschka, M.; Perlin, M. (2015). Pairs trading in the Brazilian stock market: the impact of data frequency. Revista de Administração Mackenzie, 16(2), 1-88.

Ryan, J. A.; Ulrich, J. M. (2014). XTS: eXtensible Time Series. R package version 0.9-7.

Santos, D. G.; Ziegelmann, F. A. (2014). Volatility forecasting via midas, har and their combination - an empirical comparative study for Ibovespa. Journal of Forecasting, 33(4), 284-299.

Silva, E.; Castilho, D.; Pereira, A.; Brandao, H. (2014). A neural network based approach to support the market making strategies in high-frequency trading. 2014 International Joint Conference on Neural Networks (IJCNN), p. 845-852.

Silveira, V. G. D.; Vieira, K. M.; da, A. S. (2014). Comunalidade na liquidez: Um estudo intraday para as ações do índice Bovespa. Estudos do CEPE, 1(39), 139-156.

Taufemback, C.; da Silva, S. (2011). Spectral analysis informs the proper frequency in the sampling of financial time series data. Physica A: Statistical Mechanics and its Applications, 390(11), 2067- 2073.

Val, F. D. F., Pinto, A. C. F., Klotzle, M. C. (2014). Volatility and return forecasting with high-frequency and garch models- evidence for the Brazilian market. Revista Contabilidade & Finanças, 25(65), 189-201

Vicente, J. V. M.; Araújo, G. S.; Castro, P. B. F. d.; Tavares, F. N. (2014). Assessing day-to-day volatility: Does the trading time matter? Revista Brasileira de Finanças, 12(1), 41-66.

Victor, F. G.; Perlin, M. S.; Mastella, M. (2013). Comunalidades na liquidez: evidencias e comportamento intradiario para o mercado brasileiro. Revista brasileira de Finanças, 11(3), 375-398.

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

Wickham, H.; Francois, R. (2016). dplyr: A Grammar of Data Manipulation. R package version 0.5.0.

Admati, A. R.; Pfleiderer, P. (1988). A theory of intraday patterns: Volume and price variability. Review of Financial studies, 1(1), 3-40.

Taufemback, C. and Da Silva, S. (2011). Spectral analysis informs the proper frequency in the sampling of financial time series data. Physica A: Statistical Mechanics and its Applications, 390(11), 2067- 2073.