Referências:
Nd. Bachelor's Degrees in Data Science & Big Data in the United States. https://www.bachelorsportal.com/studyoptions/269779226/data-science-big-dataunited-states.html. accessed August 2018.
Agarwal, A.; Hosanagar, K.; Smith, M. D. (2011). Location, location, location: An analysis of profitability of position in online advertising markets. Journal of Marketing Research, 48(6), 1057-1073.
Balducci, B.; Marinova, D. (2018). Unstructured data in marketing. Journal of the Academy of Marketing Science, 46(4), 1-34.
Becker, J. M.; Rai, A.; Ringle, C. M.; Völckner, F. (2013). Discovering unobserved heterogeneity in structural equation models to avert validity threats. MIS Quarterly, 37(3), 665-694.
Chan, H. Y.; Boksem, M.; Smidts, A. (2018). Neural profiling of brands: Mapping brand image in consumers' brains with visual templates. Journal of Marketing Research. 55(4), 600-615.
Chung, T. S.; Rust, R. T.; Wedel, M. (2009). My mobile music: An adaptive personalization system for digital audio players. Marketing Science, 28(1), 52-68.
Davenport, T.; Harris, J. (2017). Competing on Analytics: Updated, with a New Introduction: The New Science of Winning. Harvard Business Press.
Davenport. (2018). Will data scientist continue to be the sexiest job? https://iianalytics.com/research/will-datascientist-continue-to-be-the-sexiest-job.
Delen, D.; Zolbanin, H. M. (2018). The analytics paradigm in business research. Journal of Business Research, 90, 186-195.
Erevelles, S.; Fukawa, N.; Swayne, L. (2016). Big Data consumer analytics and the transformation of marketing. Journal of Business Research, 69(2), 897-904.
Flynn, B.; Pagell, M.; Fugate, B. (2018). Survey Research Design in Supply Chain Management: The Need for Evolution in Our Expectations. Journal of Supply Chain Management, 54(1), 1-15.
Gandomi, A.; Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137-144.
Hair, J. F.; Black, W. C.; Babin, B. J.; Anderson, R. E. (2019). Multivariate Data Analysis. 8 ed. Cengage Learning, U.K.
Hair, J. H.; Matthews, L.; Matthews, R.; Sarstedt, M. (2017). PLS-SEM or CB-SEM: Updated Guidelines on Which Method To Use. (2017). International Journal of Multivariate Data Analysis, 1(2), 107-123.
Hair, J. H.; Matthews, L.; Ringle, C.; Sarstedt, M. (2016). Identifying and Treating Unobserved Heterogeneity with FIMIX-PLS: Part I – Method. European Business Review, 28(1), 63-76.
Harris, J. M.; Ciorciari, J.; Gountas, J. (2018). Consumer neuroscience for marketing researchers. Journal of Consumer Behaviour, 17(3), 239-252.
Harrison, D. E.; Ajjan, H.; Coughlan, A. (2018). Working paper: Understanding social media sentiment, positioning and engagement: the impact on direct selling sales performance. Informs Society of Marketing Science Proceedings.
Harrison, D. E.; Hair, J. F. (2017). The Use of Technology in Direct-Selling Marketing Channels: Digital Avenues for Dynamic Growth. Journal of Marketing Channels, 24(1-2), 39-50.
Henke, N.; Levine, J.; McInerney, P. (2018). You don’t have to be a data scientist to fill this must have analytics role. Harvard Business Review. February 05.
Huang, M. H.; Rust, R. T. (2018). Artificial intelligence in service. Journal of Service Research, 21(2), 155-172.
Hulland, J.; Baumgartner, H.; Smith, K. M. (2018). Marketing survey research best practices: evidence and recommendations from a review of JAMS articles. Journal of the Academy of Marketing Science, 46(1), 92-108.
Hulland, J.; Miller, J. (2018). “Keep on Turkin”? Journal of the Academy of Marketing Science, 46(5), 789-794.
Hult, T.; Hair, J. F.; Sarstedt, M.; Ringle, C.; Proksch, D.; and Pinkwart, A. (2018). Addressing Endogeneity in International Marketing Applications of Partial Least Squares Structural Equation Modeling. Journal of International Marketing. forthcoming.
Humphreys, A.; Wang, R. J. H. (2017). Automated text analysis for consumer research. Journal of Consumer Research, 44(6), 1274-1306.
Kanellos, M. (2016). 152,000 smart devices every minute in 2025: IDC outlines the future of smart things. https://www.forbes.com/sites/michaelkanellos/2016/03/03/152000-smart-devices-everyminute-in-2025-idc-outlines-the-future-ofsmart-things/.
Krause, D.; Luzzini, D.; Lawson, B. (2018). Building the Case for A Single Key Informant in Supply Chain Management Survey Research. Journal of Supply Chain Management, 54(1), 42-50.
Kull, T. J.; Kotlar, J.; Spring, M. (2018). Small and Medium Enterprise Research in Supply Chain Management: The Case for Single Respondent Research Designs. Journal of Supply Chain Management, 54(1), 23-34.
Kumar, V. (2018). Transformative Marketing: The Next 20 Years. Journal of Marketing. 82(4), 1-12.
Matthews, L.; Hair, J. H.; Sarstedt, M.; Ringle, C. (2016). Identifying and Treating Unobserved Heterogeneity with FIMIX-PLS: Part II – Case Study. European Business Review, 28(2).
Matthews, L.; Hair, J.; Matthews, R. (2018). PLS-SEM: The holy grail for advanced analysis. Marketing Management Journal, 28(1), 1-13.
Mela, C. F. & Moorman, C. (2018). Why Marketing Analytics hasn’t lived up to its promise. https://hbr.org/2018/05/why-marketinganalytics-hasnt-lived-up-to-its-promise.
Netzer, O.; Lattin, J. M.; Srinivasan, V. (2008). A hidden Markov model of customer relationship dynamics. Marketing science, 27(2), 185-204.
Roh, J. A.; Whipple, J. M.; Boyer, K. K. (2013). The effect of single rater bias in multistakeholder research: A methodological evaluation of buyer‐supplier relationships. Production and Operations Management, 22(3), 711-725.
Rossi, B. (2015). From insight to action: why prescriptive analytics is the next big step for data. https://www.information-age.com/insightaction-why-prescriptive-analytics-next-bigstep-big-data-123458977/.
Rossi, P. E.; Allenby, G. M. (2003). Bayesian statistics and marketing. Marketing Science, 22(3), 304-328.
Sarstedt, M.; Ringle, C. M. (2010). Treating unobserved heterogeneity in PLS path modeling: a comparison of FIMIX-PLS with different data analysis strategies. Journal of Applied Statistics, 37(8), 1299-1318.
Sarstedt, M.; Ringle, C.; Hair, J. (2017). Identifying and Treating Unobserved Heterogeneity in PLS: A State of the Art Review. Chapter in Recent Developments on Partial Least Squares Structural Equation Modeling: Basic Concepts, Methodological Issues and Applications, H. Latan, and Richard Noonan, Editors, Springer International Publishing AG, Switzerland.
Sivarajah, U.; Kamal, M. M.; Irani, Z.; Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, (70), 263-286.
Snyman, J. A. and Wilke, D. N. (2005). Practical mathematical optimization: basic optimization theory and gradient-based algorithms. Springer.
Sorescu, A.; Warren, N. L.; Ertekin, L. (2017). Event study methodology in the marketing literature: an overview. Journal of the Academy of Marketing Science, 45(2), 186-207.
Varadarajan, R. (2018). A Commentary on “Transformative Marketing: The Next 20 Years”. Journal of Marketing. 82(4), 15-18.
Wedel, M.; Kannan, P. K. (2016). Marketing analytics for data-rich environments. Journal of Marketing, 80(6), 97-121.
White, S.; (2017). What is a data scientist?A key data analytics role and a lucrative career. https://www.cio.com/article/3217026/datascience/what-is-a-data-scientist-a-key-dataanalytics-role-and-a-lucrative-career.html
Worm, S.; Bharadwaj, S. G.; Ulaga, W.; Reinartz, W. J. (2017). When and why do customer solutions pay off in business markets? Journal of the Academy of Marketing Science, 45(4), 490-512.
Abubakar, A. M.; Namin, B. H.; Harazneh, I.; Arasli, H.; Tunç, T. (2017). Does gender moderate the relationship between favoritism/nepotism, supervisor incivility, cynicism and workplace withdrawal: A neural network and SEM approach. Tourism Management Perspectives, 23, 129-139.
Antons, D.; Breidbach, C. F. (2018). Big data, big insights?Advancing service innovation and design with machine learning. Journal of Service Research, 21(1), 17-39.
Hair, J. F.; Sarstedt, M.; Ringle, C. M.; Mena, J. A. (2012). An Assessment of the use of Partial Least Squares Structural Equation Modeling in Marketing Research. Journal of the Academy of Marketing Science, 40(3), 414-433.
Shmueli, G.; Ray, S.; Velasquez Estrada, J. M.; Chatla, S. B. (2016). The elephant in the room: Predictive performance of PLS models. Journal of business Research, 69, 4552-4564.
Verma, P.; Agarwal, S.; Kachroo, P.; Krishen, A. (2017). Declining transportation funding and need for analytical solutions: dynamics and control of VMT tax. Journal of Marketing Analytics, 5(3-4), 131-140.