Teorias de Inovação na Educação Superior: Determinantes do Comportamento do Professor na Adoção de Tecnologias, Métodos e Práticas de Ensino Outros Idiomas

ID:
55099
Resumo:
O comportamento do professor é ainda um tema incipiente com poucos estudos quantitativos. As escolhas de tecnologias, metodologias e práticas de ensino do professor afetam tanto os docentes quanto a aprendizagem dos discentes, tornando um tema de interesse crescente de pesquisas em diversas áreas da educação. O objetivo desta pesquisa é analisar como as teorias de inovação podem ser aplicadas para identificar os determinantes do comportamento do professor na adoção de tecnologias, métodos e práticas de ensino, buscando identificar novas variáveis e construtos, para o desenvolvimento e ampliação de modelos teóricos. O artigo inicia com a apresentação das teorias de bases amplamente difundidas em outras áreas do conhecimento: a Teoria do Comportamento Planejado (TPB); a Teoria da Difusão da Inovação (IDT); o Modelo de Aceitação da Tecnologia (TAM); e a Teoria do Comportamento Planejado Decomposto (DTPB), para o entendimento da aplicação em estudos sobre o comportamento do professor. Na sequência, são apresentados alguns estudos quantitativos realizados em diversos países, cursos e níveis de ensino, para ilustrar essa aplicação. Estas teorias e modelos podem ser usados para se prever a adoção de novas tecnologias como uma plataforma de educação à distância, métodos e práticas de ensino como as metodologias ativas de ensino e temas transversais como a Sustentabilidade.
Citação ABNT:
ALANO, E. R. C.; SOUZA, M. T. S.; HERNANDEZ, J. M. C. Teorias de Inovação na Educação Superior: Determinantes do Comportamento do Professor na Adoção de Tecnologias, Métodos e Práticas de Ensino . Administração: Ensino e Pesquisa, v. 20, n. 3, p. 1-18, 2019.
Citação APA:
Alano, E. R. C., Souza, M. T. S., & Hernandez, J. M. C. (2019). Teorias de Inovação na Educação Superior: Determinantes do Comportamento do Professor na Adoção de Tecnologias, Métodos e Práticas de Ensino . Administração: Ensino e Pesquisa, 20(3), 1-18.
DOI:
10.13058/raep.2019.v20n3.1640
Link Permanente:
http://www.spell.org.br/documentos/ver/55099/teorias-de-inovacao-na-educacao-superior--determinantes-do-comportamento-do-professor-na-adocao-de-tecnologias--metodos-e-praticas-de-ensino-/i/pt-br
Tipo de documento:
Artigo
Idioma:
Português
Referências:
ABDALA, E. C.; BARBIERI, J. C. Determinants of sustainable supply chain: an analysis of mensuration models of pressures and socio-environmental practices. Journal of Operations and Supply Chain Management, v. 7, n. 2, p. 110-123, July/Dec. 2014. DOI: http://dx.doi.org/10.12660/joscmv7n2p

AJJAN, H.; HARTSHORNE, R. Investigating faculty decisions to adopt Web 2.0 technologies: Theory and empirical tests. Internet and Higher Education, Berlim: SpringerVerlag, v. 2, n. 11, p. 71-80, May 2008. DOI: 10.1016/i.iheduc.2008.05.002

AJZEN, I.; FISHBEIN, M. Attitudes and normative beliefs as factors influencing behavioral intentions. Journal of Personality and Social Psychology, v. 21, n. 1, p. 1-9, jan. 1972.

AJZEN, I. From intentions to actions: a theory of planned behavior. In: KUHL, J. E.; BECKMANN, J. (Org.). Action control: from cognition to behavior. Springer-Verlag, Berlim Heidelberger, 1985. Cap. 2, p. 11-39.

AWA, H. O.; OJIABO, O. U.; EMECHETA, B. C. Integrating TAM, TPB and TOE frameworks and expanding their characteristic constructs for e-commerce adoption by SMEs. Journal of Science & Technology Policy Management. Flórida EUA, v. 6, n. 1, p.76-94, Nov., 2015.

BAKER, E. W.; AL-GAHTANI, S. S.; HUBONA, G. S. The effects of gender and age on new technology implementation in a developing country: testing the theory of planned behavior (TPB). Information Technology & People, Emerald Insight, v. 20, n. 4, p.352375, oct-dec., 2007. DOI: 10.1108/09593840710839798

BECKMANN, J. The theory of planned behavior. Organizational behavior and human decision processes. Cambridge, v. 50, n. 2, December, p.179-211, 1991. DOI: 10.1.1.317.9673&rep=rep1&type=pdf

CHENG, P. University lectures’ intention to teach an ethics course: a test of competing models. Journal of Business Ethics, v. 126, n. 2, p. 247-258, Nov. 2015. DOI: 10.1007/s10551-013-1949-y

CHEN, M.; LU, T.‐Y. Modeling e‐coupon proneness as a mediator in the extended TPB model to predict consumers' usage intentions. Internet Research, Bradford-United Kingdom, v. 21, n. 5, p. 508-526, May 2011. DOI 10.1108/10662241111176344

DAVIS, F. D. Perceived usefulness, perceived ease of use, and user acceptance of computer technology. MIS Quarterly, Dordrecht-Netherlands v. 13, n. 3, p. 319-340, Sep 1989. DOI: 10.2307/249008

DOI: http://dx.doi.org/10.1037/h0031930 AJZEN, I. Nature and operation of attitudes. Annual Review of Psychology, v. 52, n.1, p. 27–58, Feb. 2001. DOI: https://doi.org/101146/annurey.psych.52.1.27

FISHBEIN, M.; AJZEN, I. Belief, attitude, intention, and behavior: an introduction to theory and research. Reading, Ma: Addison-Wesley, 1975.

FIVES, H.; BUEHL, M. M. Exploring Differences in Practing Teachers’ Valuing of Pedagogical Knowledge Based on Teaching Ability Beliefs. Journal of Teacher Education. American Association of Colleges for Teacher Education: Michigan-EUA, v. 65, n. 5, p. 435448, Sep-Oct 2014. DOI: 10.1177/0022487114541813

HOLZBERGER, D.; PHILIPP, A.; KUNTER, M. How Teachers’ Self-Efficacy Is Related to Instructional Quality: A Longitudinal Analysis. Journal of Educational Psychology, American Psychological Association, v. 105, n. 3, p. 774-786, Aug 2013. DOI: 10.1037/a0032198

HUSSEIN, R. M. S.; MOURAD, M. The adoption of technological innovations in a B2B context: an empirical study on the higher education industry in Egypt. Journal of Business & Industrial Marketing, Santa Bárbara-United Kingdom, v. 29, n.6, p. 525-545, Aug 2014.

JALIVAND, M. R.; SAMIEI, N. The impact of electronic word of mouth on a tourism destination choice: Testing the theory of planned behavior (TPB). Internet Research, Bradford-United Kingdom, v. 22, n. 5, p. 591-612, Oct 2012. DOI: https://doi.org/10.1108/10662241211271563

JOLAEE, A.; NOR, K. Md; KHANI N.; YUSOFF, R. Md. Factors affecting knowledge sharing intention among academic staff. International Journal of Educational Management, Bradford-United Kingdom, v. 28, n. 4, p.413 – 431, Jun 2014. DOI: https://doi.org/10.1108/IJEM-03-2013-0041

KALU, I.; UWATT, L. E.; ASIM, A. E. Nigerian teachers’ attitude toward environmental sustainability issues in the curriculum. Journal Environmental Systems, v. 32, n. 3, p. 249259, Dec 2004.

LEE, J.; CERRETO, F. A.; LEE, J. Theory of planned behavior and teachers' decisions regarding use of educational technology. Educational Technology & Society, Canadá, v. 13, n. 1, p. 152–164, Jan 2010.

LEE, Y.C. An empirical investigation into factors influencing the adoption of an e-learning system. Online Information Review, v. 30, n. 5, p. 517-541, Sept. 2006.

MOORE, G. C.; BENBASAT, I. Development of an instrument to measure the perceptions of adopting an information technology information. Information Systems Research, v. 2, n. 3, p. 173-191, Sep 1991. DOI: http://dx.doi.org/10.1287/isre.2.3.192

PIPERE, A.; MICULE, I. Mathematical identity for a sustainable future: an interpretative phenomenological analysis. Journal of Teacher Education for Sustainability, v. 16, n. 1, p. 5-31, 2014. DOI: 10.2478/jtes-2014-0001

ROGERS, E. M. Diffusion of innovations. New York: 3 th ed., 1983.

SHUMAN, D. K.; HAM, S. H. Toward a theory of commitment to environmental education. Journal of Environmental Education, v. 28, n. 2, p. 25-32, Jul 1997.

SINGH, G.; HARDAKER, G. Barriers and enablers to adoption and diffusion of eLearning: a systematic review of the literature – a need for an integrative approach. Education + Training, v. 56, n. 2/3, p. 105-121, Oct. 2014. DOI: https://doi.org/10.1108/ET-11-20120123

SUGAR, W.; CRAWLEY, F.; FINE, B. Examining teachers' decisions to adopt new technology. Educational Technology and Society, Canada, v. 7, n. 4, p. 201-213, Oct 2004.

TAYLOR, S.; TODD, P. A. Understanding information technology usage: a test of competing models. Information System Research, v 6, n. 2, p. 144-176, June 1995. JSTOR, www.jstor.org/stable/23011007.

THURLINGS, M.; EVERS, A.T.; VERMEULEN, M. Toward a model of /explaining /teachers’ innovative behavior: a literature review. Review of Educational Research, Berkeley-USA, v. 85, n. 3, p. 430-471, Sep 2015.

TILLMANNS, t. et al. Interplay of rhizome and education for sustainable development. Journal of Teacher Education for Sustainability, v. 16, n. 2, p. 5-17, 2014. DOI: https://doi.org/10.2478/jtes-2014-2008

TONDEUR, J.; HERMANS, R.; VAN BRAAK, J.; VALCKE, M. Exploring the link between teachers’ educational belief profiles and different types of computer use in the classroom. Computer is Human Behavior, v. 24, n. 6, p. 2541-2553, Sep 2008.

USHER, E. L.; PAJARES, F. Sources of self-efficacy in school: critical review of the literature and future directions. Emory University Review of Educational Research, United Kington, v. 78, n. 4, p. 751-796, Dec 2008.

YUSOP, F. D. A dataset of factors that influence preservice teachers’ intentions to use Web 2.0 technologies in future teaching practices. British Journal of Educational Technology, v. 46, n.5, Sep. 2015. DOI: https://doi.org/10.1111/bjet.12330