Estratégias restritas ótimas para investimentos baseados em fatores no mercado de ações brasileiro Outros Idiomas

ID:
78468
Resumo:
O artigo examina estratégias de investimento para carteiras baseadas em fatores formadas pela integração de um modelo de múltiplos regimes com uma função de utilidade recursiva estocástica. Com base nos trabalhos seminais de Fama e French (1993) e Carhart (1997), os autores identificam quatro fatores de risco no mercado acionário brasileiro. Posteriormente, empregando o modelo CGL proposto por Campani et al. (2021), o estudo desenvolve estratégias de investimento para diversificar os portfólios formados com esses fatores de risco. O modelo CGL fornece a estrutura para aplicar a função de utilidade recursiva estocástica para estimar as estratégias com base em regimes, a partir dos quais os autores implementam restrições dinâmicas para controlar de forma otimizada os pesos do portfólio. Em seguida, eles realizam uma análise de desempenho por meio de um exercício fora da amostra para comparar as estratégias de múltiplos regimes com benchmarks formados por estratégias passivas e ativas de estado único. Os resultados empíricos demonstram o desempenho superior das estratégias de múltiplos regimes, conforme evidenciado pelos índices de Sharpe superiores tanto na amostra completa quanto em subamostras mais curtas dentro do exercício. Os resultados também revelam que a estratégia de múltiplos regimes sem alavancagem apresenta consistentemente a menor volatilidade em cada subconjunto da amostra. Além disso, a análise dos retornos dos equivalentes de certeza confirma a significância estatística do desempenho superior das estratégias de múltiplos regimes em relação aos benchmarks. A investigação se concentrou no mercado de ações brasileiro para examinar os possíveis benefícios e a eficácia da aplicação dessa estratégia em um contexto de mercado emergente. Em última análise, as descobertas ressaltam que as estratégias baseadas em fatores formuladas por meio de um modelo de múltiplos regimes usando uma função de utilidade recursiva estocástica têm o potencial de superar os benchmarks tradicionais em termos de retornos ajustados ao risco no mercado acionário brasileiro, oferecendo insights práticos para os investidores que navegam no cenário brasileiro.
Citação ABNT:
LEWIN, M.; CAMPANI, C. H. Estratégias restritas ótimas para investimentos baseados em fatores no mercado de ações brasileiro. Revista Contabilidade & Finanças, v. 35, n. 96, p. 0-0, 2024.
Citação APA:
Lewin, M., & Campani, C. H. (2024). Estratégias restritas ótimas para investimentos baseados em fatores no mercado de ações brasileiro. Revista Contabilidade & Finanças, 35(96), 0-0.
Link Permanente:
https://www.spell.org.br/documentos/ver/78468/estrategias-restritas-otimas-para-investimentos-baseados-em-fatores-no-mercado-de-acoes-brasileiro/i/pt-br
Tipo de documento:
Artigo
Idioma:
Português
Referências:
Ang, A. (2014). Asset management: A systematic approach to factor investing. Oxford University Press, 2014.

Asness, C., Moskowitz, T., & Pedersen, L. (2013). Value and momentum everywhere. Journal of Finance, 68(3), 929–985. https://doi.org/10.1111/jofi.12021

Barroso, P., & Santa-Clara, P. (2015). Momentum has its moments. Journal of Financial Economics, 116(1), 111–120. https://doi.org/10.1016/j.jfineco.2014.11.010

Black, A., & McMillan, D. (2004). Non-linear predictability of value and growth stocks and economic activity. Journal of Business Finance & Accounting,31,439–474. https://doi.org/10.1111/j.0306-686X.2004.00546.x

Blitz, D. (2020). Factor performance 2010–2019: A lost decade? The Journal of Beta Investment Strategies, 11(2), 57–65. https://doi.org/https://doi.org/10.3905/jii.2020.1.090

Campani, C. H., & Garcia, R. (2019). Approximate analytical solutions for consumption/investment problems under recursive utility and finite horizon. The North American Journal of Economics and Finance,48,364–384. https://doi.org/10.1016/j.najef.2019.03.005

Campani, C. H., Garcia, R., & Lewin, M. (2021). Optimal portfolio strategies in the presence of regimes in asset returns. Journal of Banking and Finance, 123(106030), 1–17. https://doi.org/10.1016/j.jbankfin.2020.106030

Carhart, M. (1997). On persistence in mutual fund performance. Journal of Finance, 52(1), 57–82. https://doi.org/10.1111/j.1540-6261.1997.tb03808.x

Chague, F., & Bueno, R. (2008). The CAPM and Fama-French models in Brazil. Latin American Meeting of the Econometric Society, working paper.

Chen, J., & Kawaguchi, Y. (2018). Multi-factor asset-pricing models under Markov regime switches: Evidence from the Chinese stock market. International Journal of Financial Studies, 6(2). https://doi.org/10.3390/ijfs6020054

Chincoli, F., & Guidolin, M. (2017). Linear and nonlinear predictability in investment style factors: Multivariate evidence. Journal of Asset Management, 18(6), 476–509. https://doi.org/10.1057/s41260-017-0048-5

Daniel, K., & Moskowitz, T. (2016). Momentum crashes. Journal of Financial Economics, 122(2), 221–247. https://doi.org/10.1016/j.jfineco.2015.12.002

DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy? The Review of Financial Studies, 22(5), 1915–1953. https://doi.org/10.1093/rfs/hhm075

Duffie, D., & Epstein, L. G. (1992). Stochastic differential utility. The Econometric Society, 60(2), 353–394. https://doi.org/10.2307/2951600

Fama, E. (2017). The Fama portfolio: Selected papers of Eugene F. Fama. University of Chicago Press. https://doi.org/10.7208/chicago/9780226426983.001.0001

Fama, E., & French, K. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33(1), 3–56. https://doi.org/10.1016/0304-405X(93)90023-5

Fama, E., & French, K. (2015). Dissecting anomalies with a five-factor model. Review of Financial Studies, 29(1), 69–103. https://doi.org/10.1093/rfs/hhv043

Ferson, W., Siegel, A., & Xu, P. (2006). Mimicking portfolios with conditioning information. Journal of Financial and Quantitative Analysis, 41(3), 607–635. https://doi.org/10.1017/S0022109000002556

Fugazza, C., Guidolin, M., & Nicodano, G. (2015). Equally weighted vs. long-run optimal portfolios. European Financial Management, 21(4), 742–789. https://doi.org/10.1111/eufm.12042

Gârleanu, N., & Pedersen, L. (2013). Dynamic trading with predictable returns and transaction costs. The Journal of Finance, 68(6), 2309–2340. https://doi.org/10.1111/jofi.12080

Guidolin, M., & Hyde, S. (2012). Can VAR models capture regime shifts in asset returns? A long-horizon strategic asset allocation perspective. Journal of Banking and Finance, 36(3), 695–716. https://doi.org/10.1016/j.jbankfin.2011.10.011

Guidolin, M., & Ono, S. (2006). Are the dynamic linkages between the macroeconomy and asset prices time-varying? Journal of Economics and Business, 58(5-6), 480–518. https://doi.org/10.1016/j.jeconbus.2006.06.009

Guidolin, M., & Timmermann, A. (2007). Asset allocation under multivariate regime switching. Journal of Economic Dynamics and Control, 31(11), 3503–3544. https://doi.org/10.1016/j.jedc.2006.12.004

Guidolin, M., & Timmermann, A. (2008a). International asset allocation under regime switching, skew, and kurtosis preferences. The Review of Financial Studies, 21(2), 889–935. https://doi.org/10.1093/rfs/hhn006

Guidolin, M., & Timmermann, A. (2008b). Size and value anomalies under regime shifts. Journal of Financial Econometrics, 6(1), 1–48. https://doi.org/10.1093/jjfinec/nbm021

Gulen, H., Xing, Y., & Zhang, L. (2011). Value versus growth: Time-varying expected stock returns. Financial Management, 40(2), 381–407. https://doi.org/10.1111/j.1755-053X.2011.01146.x

Haghani, V., & Dewey, R. (2016). A case study for using value and momentum at the asset class level. Journal of Portfolio Management, 42(3), 101–113. https://doi.org/10.3905/jpm.2016.42.3.101

Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. The Econometric Society, 57(2), 357–384. https://doi.org/10.2307/1912559

Honda, T. (2003). Optimal portfolio choice for unobservable and regime-switching mean returns. Journal of Economic Dynamics and Control, 28(1), 45–78. https://doi.org/10.1016/S0165-1889(02)00106-9

Hou, K., Xue, C., & Zhang, L. (2015). Digesting anomalies: An investment approach. The Review of Financial Studies, 28(3), 650–705. https://doi.org/10.1093/rfs/hhu068

Lewin, M., & Campani, C. H. (2020a). Portfolio management under multiple regimes: Strategies that outperform the market. Revista de Administração Contemporânea, 24(4), 300–316. https://doi.org/10.1590/1982-7849rac2020190161

Lewin, M., & Campani, C. H. (2020b). Portfolio management under multiple regimes: Out-of-sample performance. Brazilian Review of Finance, 18(3), 52–79. https://doi.org/10.12660/rbfin.v18n3.2020.81210

Lewin, M., & Campani, C. H. (2022). Constrained portfolio strategies in a regime-switching economy. Financial Markets and Portfolio Management,37,27–59. https://doi.org/10.1007/s11408-022-00414-x

Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Review of Economics and Statistics,47,13–37. https://doi.org/10.1016/B978-0-12-780850-5.50018-6

Liu, H. (2011). Dynamic portfolio choice under ambiguity and regime switching mean returns. Journal of Economic Dynamics and Control, 35(4), 623–640. https://doi.org/10.1016/j.jedc.2010.12.012

Nystrup, P., Boyd, S., Lindström, E., & Madsen, H. (2019). Multi-Period Portfolio Selection with Drawdown Control. Annals of Operations Research, 282(1–2), 245–271. https://doi.org/10.1007/s10479-018-2947-3

Perez-Quiros, G., & Timmermann, A. (2000). Firm size and cyclical variations in stock returns. Journal of Finance, 55(3), 1229–1262. https://doi.org/10.1111/0022-1082.00246

Rouwenhorst, G. (1999). Local return factors and turnover in emerging stock markets. Journal of Finance, 54(4), 1439–1464. https://doi.org/10.1111/0022-1082.00151

Santos, J., Famá, R., & Mussa, A. (2012). A adição do fator de risco momento ao modelo de precificação de ativos dos três fatores de Fama & French aplicado ao mercado acionário brasileiro. REGE-Revista de Gestão, 19(3), 453–472. https://doi.org/10.5700/rege473

Sass, J., & Haussmann, U. (2004). Optimizing the terminal wealth under partial information: The drift process as a continuous time Markov chain. Finance and Stochastics, 8(4), 553–577. https://doi.org/10.1007/s00780-004-0132-9

Sharpe, W. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19(3)425–442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x

Tu, J. (2010). Is regime switching in stock returns important in portfolio decisions? Management Science, 56(7), 1198–1215. https://doi.org/10.1287/mnsc.1100.1181

Wachter, J. (2002). Portfolio and consumption decisions under mean-reverting returns: An exact solution for complete markets. Journal of Financial and Quantitative Analysis, 37(1), 63–91. https://doi.org/10.2307/3594995