Alizadeh, S.; Brandt, M.; Diebold, F. X. (2001). Range-based estimation of stochastic volatility models or exchange rate dynamics are more interesting than you think. Journal of Finance, 57, 1047-1092.
Andersen, T. G.; Bollerslev, T. (1998). Answering the skeptics: yes, standard volatility models do provide accurate forecasts. International Economic Review, 39, 885-905.
Andersen, T. G.; Bollerslev, T.; Diebold, F. X.; Labys, P. (2003). Modeling and forecasting realized volatility. Econometrica, 71(2), 579-625.
Anderson, R. I.; Chen, Y. C.; Wang, L. M. (2015). A range-based volatility approach to measuring volatility contagion in securitized real state markets. Economic Modelling, 45, 223-235.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307-327.
Brandt, M.; Jones, C. (2002). Volatility forecasting with range-based EGARCH models (manuscript). Philadelphia, PA: University of Pennsylvania.
Chou, R. Y. (2005). Forecasting financial volatilities with extreme values: the conditional autoregressive range (CARR) model. Journal of Money, Credit and Banking, 37(3), 561-582.
Chou, R. Y.; Chou, H.; Liu, N. (2010). Range volatility models and their applications in finance. In C.-F. Lee, & J. Lee (Ed.), Handbook of quantitative finance and risk management. p. 1273-1281. New York: Springer.
Chou, R. Y.; Chou, H.; Liu, N. (2015). Range volatility: a review of models and empirical studies. In C.-F. Lee, & J. Lee (Ed.), Handbook of financial econometrics and statistics. p. 2029-2050). New York: Springer.
Chou, R. Y.; Liu, N.; Wu, C. (2007). Forecasting time-varying covariance with a range-based dynamic conditional correlation model. (working paper). Taipé, Taiwan: Academia Sinica.
Christoffersen, P. F. (1998). Evaluating interval forecasts. International Economic Review, 39, 841-862.
Christoffersen, P. F. (2002). Elements of financial risk management. San Diego, CA: Academic.
Diebold, F. X.; Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, 13(3), 253-263.
Dunis, C.; Laws, J.; Sermpinis, G. (2010). Modeling commodity value-at-risk with high order neural networks. Applied Financial Economics, 20(7), 585-600.
Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation. Econometrica, 50, 987-1008.
Engle, R. F. (2002). New frontiers for ARCH models. Journal of Applied Econometrics, 17, 425-446.
Gallant, R.; Hsu, C.; Tauchen, G. (1999). Calculating volatility diffusions and extracting integrated volatility. Review of Economics and Statistics, 81, 617-631.
Garman, M. B.; Klass, M. J. (1980). On the estimation of price volatility from historical data. Journal of Business, 53, 67-78.
Glosten, L. R.; Jagannathan, R.; Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48(5), 1779-1801.
Hartz, C.; Mittinik, S.; Paolella, M. S. (2006). Accurate value-at-risk forecasting based on the normal-GARCH model. Computational Statistics & Data Analysis, 51(4), 2295-2312.
Kupiec, P. (1995). Techniques for verifying the accuracy of risk management models. Journal of Derivatives, 3, 73-84.
Leite, A. L.; Figueiredo Pinto, A. C.; Klotzle, M. C. (2016). Efeitos da volatilidade idiossincrática na precificação de ativos. Revista Contabilidade & Finanças, 27(70), 98-112.
Li, H.; Hong, Y. (2011). Financial volatility forecasting with range-based autoregressive model. Financial Research Letters, 8(2), 69-76.
Newey, W. K.; West, K. D. (1987). A simple, positive semi-definite heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55(3), 703-708.
Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. Journal of Business, 53, 61-65.
Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics, 160, 246-256.
Poon, S.; Granger, C. W. J. (2003). Forecasting volatility in financial markets: a review. Journal of Economic Literature, 41, 478-539.
Rogers, L. C. G.; Satchell, S. E. (1991). Estimating variances from high, low, opening, and closing prices. Annals of Applied Probability, 1, 504-512.
Sharma, P.; Vipul (2016). Forecasting stock market volatility using realized GARCH model: international evidence. The Quarterly Review of Economics and Finance, 59, 222-230.
Su, J.; Hung, J. (2011). Empirical analysis of jump dynamics, heavy tails and skewness on valueat-risk estimation. Economic Modeling, 28(3), 1117-1130.
Tian, S.; Hamori, S. (2015). Modeling interest rate volatility: a realized GARCH approach. Journal of Banking & Finance, 61, 158-171.
Val, F. F.; Figueiredo Pinto, A. C.; Klotzle, M. C. (2014). Volatility and return forecasting with high-frequency and GARCH models: evidence for the Brazilian market. Revista Contabilidade & Finanças, 25(65), 189-201.
Wang, S.; Watada, J. (2011). Two-stage fuzzy stochastic programming with value-at-risk criteria. Applied Soft Computing, 11(1), 1044-1056.
Yang, D.; Zhang, Q. (2000). Drift-independent volatility estimation based on high, low, open, and close prices. Journal of Business, 73, 477-491.