Análise multifractal do ibovespa: dinâmicas de preço, volume negociado e eficiência de mercado Outros Idiomas

ID:
78202
Resumo:
Objetivo: Este estudo investiga as flutuações de preço, volume negociado e correlação cruzada do Ibovespa por meio de métodos multifractais, buscando compreender as dinâmicas do mercado fi-nanceiro brasileiro e fornecer suporte para decisões financeiras mais informadas.Fundamento: A pesquisa se baseia na literatura sobre análise multifractal, que tem demonstrado eficácia na investigação de flutuações de preços em mercados financeiros. O estudo amplia essa abordagem ao integrar a análise de preços e volumes no contexto do mercado brasileiro, uma pers-pectiva ainda pouco explorada.Método: Foram empregados os métodos de Análise de Flutuação Destendenciada Multifractal (MF-DFA) e Análise de Correlação Cruzada Multifractal (MF-DCCA) para examinar séries temporais do Ibovespa em reais e dólares, compreendendo o período de 4 de janeiro de 2010 a1 de setembro de 2022, totalizando 3.137 observações.Resultados: A análise revelou características multifractais nas séries diárias, com flutuações tanto anti-persistentes quanto persistentes, refletindo a complexidade do mercado financeiro brasileiro. Durante períodos críticos, como a recessão provocada pela pandemia da Covid-19, observou-se um aumento significativo na volatilidade e no volume negociado, sugerindo respostas emocionais dos investidores. Além disso, a persistência nas tendências de preço e volume aponta para um compor-tamento com memória de longo prazo, mesmo em cenários de instabilidade global.Contribuições: O estudo oferece uma contribuição significativa ao aplicar métodos multifractais para analisar a complexidade do mercado financeiro brasileiro. Os achados destacam o volume ne-gociado como uma importante fonte de informação para decisões financeiras e reforçam a necessi-dade de estratégias adaptativas em cenários de alta volatilidade, como os provocados pela recessão da Covid-19.
Citação ABNT:
MORAES, A. K.; CERETTA, P. S.; CASTRO JÚNIOR, L. G. Análise multifractal do ibovespa: dinâmicas de preço, volume negociado e eficiência de mercado. Revista Evidenciação Contábil & Finanças, v. 12, n. 1, p. 0-0, 2024.
Citação APA:
Moraes, A. K., Ceretta, P. S., & Castro Júnior, L. G. (2024). Análise multifractal do ibovespa: dinâmicas de preço, volume negociado e eficiência de mercado. Revista Evidenciação Contábil & Finanças, 12(1), 0-0.
Link Permanente:
https://www.spell.org.br/documentos/ver/78202/analise-multifractal-do-ibovespa--dinamicas-de-preco--volume-negociado-e-eficiencia-de-mercado/i/pt-br
Tipo de documento:
Artigo
Idioma:
Português
Referências:
Ali, S. R. M., Mensi, W., Anik, K. I., Rahman, M. & Kang, S. H. (2022). The impacts of COVID-19 crisis on spillovers between the oil and stock markets: Evidence from the largest oil importers and exporters. Economic Analysis and Policy, v. 73: 345–372. https://doi.org/10.1016/j.eap.2021.11.009.

Arshad, S. Rizvi, S. A. R., Haroon, O., Mehmood, F. & Gong, Q. (2021). Are oil prices efficient? Economic Modelling, 96, Pages 362-370. https://doi.org/10.1016/j.econmod.2020.03.018

B3. (2025). Bolsa de Valores do Brasil, 11 Jan. 2025. Disponível em https://www.b3.com.br/pt_br/market-data-e-indices/servicos-de-dados/market-data/.

Beaver, W.H. (1968). The information content of annual earnings announcements. J. Account. Res. pp. 67-92. https://doi.org/10.2307/2490070

Calvet, L. & Fisher, A. (2002). Multifractality in asset returns: Theory and evidence. Review of Economics and Statistics, 84, 381-406. https://doi.org/10.1162/003465302320259420

David, S. A., Inácio, C.M.C., Quintino, D.D. & Machado, J.A.T. (2020). Measuring the Brazilian ethanol and gasoline market efficiency using DFA-Hurst and fractal dimension. Energy Economics, v. 85. https://doi.org/10.1016/j.eneco.2019.104614

El Alaoui, M. (2017). Price–volume multifractal analysis of the moroccan stock market. Physica A: Statistical Mechanics and its Applications, V. 486, 15, Pages 473-485. https://doi.org/10.1016/j.physa.2017.05.052

Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, v. 25: 383–417.

Guo, Y., Yu, Z., Yu, C., Cheng, H., Chen, W. & Zhang, H. (2021). Asymmetric multifractal features of the price–volume correlation in China’s gold futures market based on MF-ADCCA. Research in International Business and Finance, V. 58. https://doi.org/10.1016/j.ribaf.2021.101495

Hasan, R. & Salim, M. M. (2017). Power law cross-correlations between price change and volume change of indian stocks. Physica A: Statistical Mechanics and Its Applications, 473: 620–31. https://doi.org/10.1016/j.physa.2017.01.002

Hurst, E. (1951). Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, v.116, pp.770-799.

IPEA. (2022) Carta conjuntura, Número 56, Visão geral da conjuntura, nota de conjuntura 31, terceiro trimestre de 2022. Fonte: https://www.ipea.gov.br/cartadeconjuntura/wp-content/uploads/2022/09/220930_cc_56_nota_31_visao_geral.pdf

Jiang, Z.Q. Xie, W.J., Zhou, W.X. & Sornette, D. (2019). Multifractal analysis of financial markets: a review. Reports on Progress in Physics, V. 82. https://doi.org/ 10.1088/1361-6633/ab42fb

Jiang, Z. Q., Xie, X.J. & Zhou, W. (2014). Testing the weak-form efficiency of the WTI crude oil futures market. Physica A: Statistical Mechanics and its Applications, 405, Pages 235-244. https:// 10.1016/j.physa.2014.02.042

Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A. & Stanley, H. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Applications, v. 316, pp. 87-114.

Khediri, K. B. & Charfeddine, L. (2015). Evolving efficiency of spot and futures energy markets: A rolling sample approach. Journal of Behavioral and Experimental Finance, 6, p.65-79. https://doi.org/10.1016/j.jbef.2015.03.006

Khuntia, S. & Pattanayak. J. K. (2018). Adaptive market hypothesis and evolving predictability of bitcoin. Economics Letters, v. 167: 26–28. https://doi.org/10.1016/j.econlet.2018.03.005

Kristoufek, L. & Vosvrda, M. (2013). Measuring capital market efficiency: Global and local correlations structure. Physica A: Statistical Mechanics and its Applications, vol. 392, pp. 184-193. https://doi.org /10.1016/j.physa.2012.08.003

Kukacka, J. & Kristoufek, L. (2020). Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality. Journal of Economic Dynamics and Control, V. 113. https://doi.org/10.1016/j.jedc.2020.103855

Lo, A. W. (2004). The Adaptive Markets Hypothesis. The Journal of Portfolio Management 30th Anniversary. v. 30, pp.15-29. https://doi.org/10.3905/jpm.2004.442611

Mandelbrot, B. B. (1999). A multifractal walk down wall street. Scientific American, a division of Nature America, Inc., v. 280, n. (2) pp. 70-73. https://www.jstor.org/stable/26058060

Memon, B. A. Aslam, F., Asadova, S. & Ferreira, P. (2023). Are clean energy markets efficient? A multifractal scaling and herding behavior analysis of clean and renewable energy markets before and during the Covid19 pandemic. Heliyon, 9. https://doi.org/10.1016/j.heliyon.2023.e22694

Memon, B. A., Yao, H. & Naveed, H. M. (2022). Examining the efficiency and herding behavior of commodity markets using multifractal detrended fluctuation analysis. Empirical evidence from energy, agriculture, and metal markets. Resources Policy, 77. https://doi.org/10.1016/j.resourpol.2022.102715

Mensi, W., Lee, Y-J., Vo, X.V. & Yoon, S-M. (2021). Does oil price variability affect the long memory and weak form efficiency of stock markets in top oil producers and oil Consumers? Evidence from an asymmetric MF-DFA approach. The North American Journal of Economics and Finance, V. 57. https://doi.org/10.1016/j.najef.2021.101446

Mensi, W. Sensoy, A., Vo, X. V. & Kang, S. H. (2020). Impact of Covid-19 outbreak on asymmetric multifractality of gold and oil prices. Resources Policy, 69. https://doi.org/ 10.1016/j.resourpol.2020.101829

Mensi, W., Vo, X. V. & Kang, S. H. (2022). Upward/downward multifractality and efficiency in metals futures markets: The impacts of financial and oil crises. Resources Policy, 76. https://doi.org/10.1016/j.resourpol.2022.102645

Monge, M. (2022). Bunker fuel, commodity prices and shipping market indices following the COVID-19 pandemic. A time-frequency analysis. International Economics, V. 172, P. 29-39. https://doi.org/10.1016/j.inteco.2022.08.003.

Moraes, A. K., Furtini, A. A. S., Prado, J. W., Castro Junior, L. G., & Ceretta, P. S. (2024). Evolução da produção científica sobre o Mercado Eficiente: Estudo bibliométrico. Contextus – Revista Contemporânea De Economia E Gestão, 22. https://doi.org/10.19094/contextus.2024.92462

Patil, A. C. & Rastogi, S. (2019). Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature. Journal of Risk and Financial Management, v.12. https://doi.org/10.3390/jrfm12020105

Patil, A. C. & Rastogi, S. (2020). Multifractal Analysis of Market Efficiency across Structural Breaks: Implications for the Adaptive Market Hypothesis. Journal of Risk and Financial Management, v.13. https://doi:10.3390/jrfm13100248

Peng, C-K., Shlomo, H., Eugene, S. H. & Goldberger, A. L. (1994). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, V. 5. https://doi:10.1063/1.166141

Podobnik, B. & Stanley, H. (2008). Detrended Cross-Correlation Analysis: a new method for analyzing two nonstationary time series. Physical Review Letters, v. 100. https://doi.org/10.1103/PhysRevLett.100.084102

Rak, R., Drozdż, S., Forczek, M., Kwapień, J. & Oświȩcimka, P. (2015). Detrended cross-correlations between returns, volatility, trading activity, and volume traded for the stock market companies. Europhys. Lett., v. 112. https://doi.org/10.5506/APhysPolB.44.2035

Ruan, Q., Cui, H. &Fan, V. (2020). Spread de esmagamento de soja da China: análise não linear baseada em MF-DCCA. Physica A., V. 554. https://doi.org/10.1016/j.physa.2019.123899

Ruan, Q., Wang, Y., Lu, X. & Qin, J. (2016). Cross-correlations between Baltic Dry Index and crude oil prices. Phys. A Stat. Mech. Its Appl., v. 453, pp. 278-289. https://doi.org/10.1016/j.physa.2016.02.018

Stošić, D., Stošić, D., Ludermir, T. B. & Stošić, T. (2019). Multifractal behavior of price and volume changes in the cryptocurrency market. Physica A: Statistical Mechanics and its Applications, V. 520, pp. 54-61. https://doi.org/10.1016/j.physa.2018.12.038

Stošić, D., Stošić, D., Stošić, T. & Stanley, H. E. (2015). Multifractal properties of price change and volume change of stock market índices. Physica A: Statistical Mechanics and its Applications, Elsevier, v. 428, pp. 46-51. https://doi: 10.1016/j.physa.2015.02.046

Tauchen, G. E. & Pitts, M. (1983). The Price Variability-Volume Relationship on Speculative Markets. Econometrica, Vol. 51, No. 2, pp. 485-505. https://doi.org/10.2307/1912002

WORLDBANK. Global economic Prospects, (2022). Disponível em: https://openknowledge.worldbank.org/bitstream/handle/10986/37224/Global-Economic-Prospects-June-2022-Global-Outlook.pdf.