Adjei, J. K., Adams, S., & Mamattah, L. (2021). Cloud computing adoption in Ghana; Accounting for institutional factors. Technology in Society, 65, 101583. https://doi. org/10.1016/j.techsoc.2021.101583
Akter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., & Childe, S. J. (2016). How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182, 113-131. https://doi.org/10.1016/j. ijpe.2016.08.018
Arunachalam, D., Kumar, N., & Kawalek, J. P. (2018). Understanding big data analytics capabilities in supply chain management: Unravelling the issues, challenges and implications for practice. Transportation Research Part E: Logistics and Transportation Review, 114, 416-436. https://doi. org/10.1016/j.tre.2017.04.001
Azeem, M., Haleem, A., Bahl, S., Javaid, M., Suman, R., & Nandan, D. (2022). Big data applications to take up major challenges across manufacturing industries: A brief review. Materials Today: Proceedings, 49, 339-348. https://doi. org/10.1016/j.matpr.2021.02.147
Bag, S., Pretorius, J. H. C., Gupta, S., & Dwivedi, Y. K. (2021). Role of institutional pressures and resources in the adoption of big data analytics powered artificial intelligence, sustainable manufacturing practices and circular economy capabilities. Technological Forecasting and Social Change, 163, 120420. https://doi.org/10.1016/j. techfore.2020.120420
Barney, J. B. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99-120. https://doi. org/10.1177/014920639101700108
Barney, J. B. (2001). Is the resource-based “view” a useful perspective for strategic management research? Yes. Academy of Management Review, 26(1), 41-56. https://doi.org/10.5465/ amr.2001.4011938
Barney, J. B., Ketchen, D. J., Jr., & Wright, M. (2011). The future of resource-based theory: Revitalization or decline? Journal of Management, 37(5), 1299-1315. https://doi. org/10.1177/0149206310391805
Bergmann, M., Brück, C., Knauer, T., & Schwering, A. (2020). Digitization of the budgeting process: determinants of the use of business analytics and its effect on satisfaction with the budgeting process. Journal of Management Control, 31(1-2), 25-54.
Brinch, M., Stentoft, J., Jensen, J. K., & Rajkumar, C. (2018). Practitioners understanding of big data and its applications in supply chain management. The International Journal of Logistics Management, 29(2), 555–574. https://doi. org/10.1108/IJLM-05-2017-0115
Cabrera-Sánchez, J. P., & Villarejo-Ramos, Á. F. (2019). Fatores que afetam a adoção de análises de big data em empresas. Revista de Administração de Empresas, 59(6), 415429. https://doi.org/10.1590/S0034-759020190607Chahal, H., Gupta, M., Bhan, N., & Cheng, T. C. E. (2020). Operations management research grounded in the resourcebased view: A meta-analysis. International Journal of Production Economics, 230, 107805. https://doi.org/10.1016/j. ijpe.2020.107805
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Routledge.
Cruz, A. M., & Haugan, G. L. (2019). Determinants of maintenance performance: A resource-based view and agency theory approach. Journal of Engineering and Technology Management, 51, 33-47. https://doi.org/10.1016/j. jengtecman.2019.03.001
DiMaggio, P. J., & Powell, W. W. (1983). The iron cage revisited: Institutional isomorphism and collective rationality in organizational fields. American Sociological Review, 147-160. https://doi.org/10.2307/2095101
Duan, Y., Cao, G., & Edwards, J. S. (2020). Understanding the impact of business analytics on innovation. European Journal of Operational Research, 281(3), 673-686. https://doi. org/10.1016/j.ejor.2018.06.021
Dubey, R., Gunasekaran, A., & Ali, S. S. (2015). Exploring the relationship between leadership, operational practices, institutional pressures and environmental performance: A framework for green supply chain. International Journal of Production Economics, 160, 120-132. https://doi.org/10.1016/j. ijpe.2014.10.001
Dubey, R., Gunasekaran, A., Childe, S. J., Blome, C., & Papadopoulos, T. (2019b). Big data and predictive analytics and manufacturing performance: Integrating institutional theory, resource-based view and big data culture. British Journal of Management, 30(2), 341-361. http://dx.doi. org/10.1111/1467-8551.12355
Dubey, R., Gunasekaran, A., Childe, S. J., Wamba, S. F., & Papadopoulos, T. (2016). The impact of big data on worldclass sustainable manufacturing. The International Journal of Advanced Manufacturing Technology, 84(1-4), 631-645. https://doi.org/10.1007/s00170-015-7674-1
Falsarella, O. M., & Jannuzzi, C. S. C. (2020). Inteligência organizacional e competitiva e big data: Uma visão sistêmica para a gestão sustentável das organizações. Perspectivas em Ciência da Informação, 25, 179-204. http://dx.doi. org/10.1590/1981-5344/3497
Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 11491160. http://doi:10.3758/brm.41.4.1149
Félix, B. M., Tavares, E., & Cavalcante, N. W. F. (2018). Critical success factors for big data adoption in the virtual retail: Magazine Luiza case study. Revista Brasileira de Gestão de Negócios, 20(1), 112-126. https://doi.org/10.7819/rbgn. v20i1.3627Fogaça, D., Grijalvo, M., & Sacomano, M., Neto (2022). An institutional perspective in the industry 4.0 scenario: A systematic literature review. Journal of Industrial Engineering and Management, 15(2), 309-322. http://dx.doi.org/10.3926/ jiem.3724
Fonseca, V. D. (2003). A abordagem institucional nos estudos organizacionais: Bases conceituais e desenvolvimentos contemporâneos. In M. M. F. Vieira, & C. A. Carvalho (Eds.), Organizações, instituições e poder no Brasil (pp. 47-66). Ed. FGV.
Francisco, E. D. R., Kugler, J. L., Kang, S. M., Silva, R., & Whigham, P. A. (2020). Além da tecnologia: Desafios gerenciais na era do Big Data. Revista de Administração de Empresas, 59, 375-378. https://doi.org/10.1590/S0034759020190603Galas, E. S., & Ponte, V. M. R. (2006). O Balanced Scorecard e o alinhamento estratégico da tecnologia da informação: Um estudo de casos múltiplos. Revista Contabilidade & Finanças, 17(40), 37-51. https://doi.org/10.1590/S151970772006000100004Gerrikagoitia, J. K., Unamuno, G., Urkia, E., & Serna, A. (2019). Digital manufacturing platforms in the industry 4.0 from private and public perspectives. Applied Sciences, 9(14), 29-34. https://doi.org/10.3390/app9142934
Grant, R. M. (1991). The resource-based theory of competitive advantage: Implications for strategy formulation. California Management Review, 33(3), 114-135. https://doi. org/10.2307/41166664
Guarido, E. R., Filho, & Costa, M. C. (2012). Contabilidade e institucionalismo organizacional: Fundamentos e implicações. Revista Contabilidade e Controladoria, 4(1), 20-41. http:// dx.doi.org/10.5380/rcc.v4i1.26685Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308-317. https://doi.org/10.1016/j.jbusres.2016.08.004
Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049-1064. https://doi.org/10.1016/j. im.2016.07.004
Hair, J. F., Jr., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial least squares structural equation modeling (PLS-SEM) using R: A workbook. Springer Nature. Hannan, M. T., & Freeman, J. (1977). The population ecology of organizations. American Journal Of Sociology, 82(5), 929-964. http://www.jstor.org/stable/2777807
Hair, J. F., Jr., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 6(2), 106-121. https://doi.org/10.1108/EBR10-2013-0128
Helfat, C. E., & Peteraf, M. A. (2003). The dynamic resourcebased view: Capability lifecycles. Strategic Management Journal, 24(10), 997-1010. https://doi.org/10.1002/smj.332 Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43, 115-135.
Irwin, A., Vedel, J. B., & Vikkelsø, S. (2021). Isomorphic difference: Familiarity and distinctiveness in national research and innovation policies. Research Policy, 50(4), 104220. https://doi.org/10.1016/j.respol.2021.104220
Liang, H., Saraf, N., Hu, Q., & Xue, Y. (2007). Assimilation of enterprise systems: The effect of institutional pressures and the mediating role of top management. MIS Quarterly, 31(1), 59-87. https://doi.org/10.2307/25148781 Loshin, D. (2013). Big data analytics: from strategic planning to enterprise integration with tools, techniques, NoSQL, and graph. Elsevier.
Madeira Pontes, M. D., Duarte Pontes, T. L., & Dutra de Andrade, R. (2021). A adoção de sistemas de Business Intelligence & Analytics na contabilidade de gestão por entidades da Administração Pública: Uma revisão da literatura. Revista Facultad de Ciencias Económicas: Investigación y Reflexión, 29(1), 95-114. https://doi.org/10.18359/rfce.5273
Makadok, R. (2001). Toward a synthesis of the resource-based and dynamic-capability views of rent creation. Strategic Management Journal, 22(5), 387-401. http://dx.doi. org/10.1002/smj.158
Medeiros, M. M., Maçada, A. C., & Hoppen, N. (2021). O papel da administração e análise de big data como habilitadoras da gestão do desempenho corporativo. Revista de Administração Mackenzie, 22(6), eRAMD210063. https://doi. org/10.1590/1678-6971/eramd210063Meyer, J. W., & Rowan, B. (1977). Institutionalized organizations: Formal structure as myth and ceremony. American Journal of Sociology, 83(2), 340-363. https://doi.org/10.1086/226550
Mikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2019). Big data analytics and firm performance: Findings from a mixedmethod approach. Journal of Business Research, 98, 261-276. https://doi.org/10.1016/j.jbusres.2019.01.044
Mikalef, P., Pappas, I. O., Krogstie, J., & Giannakos, M. (2018). Big data analytics capabilities: A systematic literature review and research agenda. Information Systems and e-Business Management, 16(3), 547-578. https://doi.org/10.1007/s10257017-0362-y
Möller, K., Schäffer, U., & Verbeeten, F. (2020). Digitalization in management accounting and control: an editorial. Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, 31(1), 1-8. https://doi.org/10.1007/ s00187-020-00300-5
Oliver, C. (1991). Strategic responses to institutional processes. Academy of Management Review, 16(1), 145-179. https://doi.org/10.2307/258610
Oliver, C. (1997). Sustainable competitive advantage: Combining institutional and resource-based views. Strategic Management Journal, 18(9), 697-713. https://www.jstor.org/stable/3088134
Pauleen, D. J., & Wang, W. Y. (2017). Does big data mean big knowledge? KM perspectives on big data and http://dx.doi.org/10.1108/JKM-08-2016-0339
Pedroso, R. S., Oliveira, M. D. S., Araujo, R. B., & Moraes, J. F. D. (2004). Tradução, equivalência semântica e adaptação cultural do Marijuana Expectancy Questionnaire (MEQ). Psico-usf, 9, 129-136.
Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879.
Queiroz, M. M., & Pereira, S. C. F. (2019). Intention to adopt big data in supply chain management: A Brazilian perspective. Revista de Administração de Empresas, 59, 389401. https://doi.org/10.1590/S0034-759020190605
Reginato, L., & Nascimento, A. M. (2007). Um estudo de caso envolvendo Business Intelligence como instrumento de apoio à controladoria. Revista Contabilidade & Finanças, 18(Spec), 69-83. https://doi.org/10.1590/S151970772007000300007Ringle, C. M., Silva, D., & Bido, D. S. (2014). Modelagem de equações estruturais com utilização do SmartPLS. Revista Brasileira de Marketing, 13(2), 56-73. https://doi.org/10.5585/ remark.v13i2.2717Sakurai, R., & Zuchi, J. D. (2018). As revoluções industriais até a Indústria 4.0. Revista Interface Tecnológica, 15(2), 480-491. https://doi.org/10.31510/infa.v15i2.386
Schäfer, U., & Brueckner, L. (2019). Rollenspezifsche Kompetenzprofle für das Controlling der Zukunft. Controlling & Management Review, 63(7), 14–30. https://doi.org/10.1007/ s12176-019-0046-1
Schäfer, U., & Weber, J. (2018, 26 März). Der Controller verliert die Kontrolle. Frankfurter Allgemeine Zeitung.
Schoenherr, T., & Speier-Pero, C. (2015). Data science, predictive analytics, and big data in supply chain management: Current state and future potential. Journal of Business Logistics, 36(1), 120-132. https://doi.org/10.1111/ jbl.12082
Scott, W. R. (1994). Institutions and organizations: Toward a theorical synthesis. In W. R. Scott, & J. W. Meyer (Orgs.), Institutional environments and organizations: structural complexity and individualism (pp. 55-78). SAGE.
Scott, W. R. (2008). Institutions and organizations: Ideas and interests. SAGE.
Silva, E. (2019). Análise de políticas públicas brasileiras em ciência, tecnologia e inovação com foco na cultura de inovação e atuação integrada de agentes do sistema de inovação. RDBCI: Revista Digital de Biblioteconomia e Ciência da Informação, 17, e019019. https://doi.org/10.20396/rdbci.v17i0.8654693
Srinivasan, R., & Swink, M. (2018). An investigation of visibility and flexibility as complements to supply chain analytics: An organizational information processing theory perspective. Production and Operations Management, 27(10), 1849-1867. https://doi.org/10.1111/poms.12746
T., Luo, Z., Wamba, S. F., & Roubaud, D. (2019a). Can big data and predictive analytics improve social and environmental sustainability? Technological Forecasting and Social Change, 144, 534-545. https://doi.org/10.1016/j. techfore.2017.06.020
Vidgen, R., Shaw, S., & Grant, D. B. (2017). Management challenges in creating value from business analytics. European Journal of Operational Research, 261(2), 626-639. https://doi. org/10.1016/j.ejor.2017.02.023
Vitale, G., Cupertino, S., & Riccaboni, A. (2020). Big data and management control systems change: The case of an agricultural SME. Journal of Management Control, 31, 123-152.
Williams, C., & Spielmann, N. (2019). Institutional pressures and international market orientation in SMEs: Insights from the French wine industry. International Business Review, 28(5). https://doi.org/10.1016/j.ibusrev.2019.05.002
Yu, W., Chavez, R., Jacobs, M. A., & Feng, M. (2018). Data-driven supply chain capabilities and performance: A resourcebased view. Transportation Research Part E: Logistics and Transportation Review, 114, 371-385. https://doi. org/10.1016/j.tre.2017.04.002
Zhang, Y., Ren, S., Liu, Y., & Si, S. (2017). A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products. Journal of Cleaner Production, 142, 626-641. https://doi.org/10.1016/j. jclepro.2016.07.123