O papel da administração e análise de big data como habilitadoras da gestão do desempenho corporativo Outros Idiomas

ID:
64802
Resumo:
Objetivo: A transformação digital e o big data (BD) geraram uma verdadeira revolução no gerenciamento orientado a dados. Embora o BD melhore a gestão do desempenho corporativo (GDC), isso também implica aumentar a exposição a riscos em vários estágios do ciclo de vida do BD. À medida que aumentam os requisitos regulatórios e a necessidade de análise do banco de dados em diversas áreas de negócios, é necessário que a organização estabeleça definições, políticas e processos para garantir a qualidade dos dados, a fim de proteger e potencializar seus dados para obter vantagem competitiva. Portanto, compreender a administração de dados (AD) e a business analytics (BA) é essencial para o gerenciamento dos negócios. O objetivo deste estudo é analisar o papel do BD, da AD e da BA como habilitadores da GDC. Originalidade/valor: Contribuímos para a teoria ao conceituarmos, validarmos e discutirmos o construto AD e ao destacarmos o papel dela com a BA na relação entre BD e GDC. As evidências deste estudo indicam que na prática a AD e a BA são um caminho crítico para as organizações obterem um melhor controle dos efeitos que o BD pode ter na GDC. Design/metodologia/abordagem: Realizou-se uma survey com 312 gestores que utilizam big data analytics (BDA) em organizações brasileiras. Os dados foram analisados por meio de equações estruturais e testes de mediação. Resultados: Os resultados sugerem que a administração e a analítica de dados de negócios, tanto isoladamente quanto em conjunto, podem transmitir o efeito BD para a GDC. No entanto, um melhor nível de ajuste do modelo é obtido quando há uma multimediação serializada nesse relacionamento, sendo a AD um antecedente para a BA.
Citação ABNT:
MEDEIROS, M.; HOPPEN, N.; MAÇADA, A. O papel da administração e análise de big data como habilitadoras da gestão do desempenho corporativo. Revista de Administração Mackenzie, v. 22, n. 6, p. 1-32, 2021.
Citação APA:
Medeiros, M., Hoppen, N., & Maçada, A. (2021). O papel da administração e análise de big data como habilitadoras da gestão do desempenho corporativo. Revista de Administração Mackenzie, 22(6), 1-32.
DOI:
10.1590/1678-6971/eRAMD210063
Link Permanente:
https://www.spell.org.br/documentos/ver/64802/o-papel-da-administracao-e-analise-de-big-data-como-habilitadoras-da-gestao-do-desempenho-corporativo/i/pt-br
Tipo de documento:
Artigo
Idioma:
Português
Referências:
Abraham, R.; Schneider, J.; vom Brocke, J. (2019). Data governance: A conceptual framework, structured review, and research agenda. International Journal of Information Management, n. 49, p. 424-438.

Acito, F.; Khatri, V. (2014). Business analytics: Why now and what next? Business Horizons, 57(5), p. 565-570.

Alharthi, A.; Krotov, V.; Bowman, M. (2017). Addressing barriers to big data. Business Horizons, 60(3), p. 285-292.

Alhassan, I.; Sammon, D.; Daly, M. (2018). Data governance activities: A comparison between scientific and practice-oriented literature. Journal of Enterprise Information Management, 31(2), p. 300-316.

Appelbaum, D.; Kogan, A.; Vasarhelyi, M.; Yan, Z. (2017). Impact of business analytics and enterprise systems on managerial accounting. International Journal of Accounting Information Systems, n. 25, p. 29-44.

Armstrong, J. S.; Overton, T. S. (1977). Estimating nonresponse bias in mail surveys. Journal of Marketing Research, 14(3), p. 396-402.

Brous, P.; Janssen, M.; Vilminko-Heikkinen, R. (2016). Coordinating decision-making in data management activities: A systematic review of data governance principles. In: H. Scholl et al. (eds.), p. Electronic Government. EGOV 2016. Lecture Notes in Computer Science. p. 115-125. Cham: Springer.

Chen, H.; Chiang, R. H.; Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), p. 1165-1188.

Chen, M.; Mao, S.; Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), p. 171-209.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: L. Erlbaum Associates.

Conboy, K.; Mikalef, P.; Dennehy, D.; Krogstie, J. (2020). Using business analytics to enhance dynamic capabilities in operations research: A case analysis and research agenda. European Journal of Operational Research, 281(3), p. 656-672.

Côrte-Real, N.; Ruivo, P.; Oliveira, T. (2019). Leveraging internet of things and big data analytics initiatives in European and American firms: Is data quality a way to extract business value? Information & Management, 57(1), p. 103-141.

Coyne, E. M.; Coyne, J. G.; Walker, K. B. (2018). Big data information governance by accountants. International Journal of Accounting & Information Management, 26(1), p. 153-170.

DalleMule, L.; Davenport, T. H. (2017). What’s your data strategy. Harvard Business Review, 95(3), p. 112-121.

Delen, D.; Zolbanin, H. M. (2018). The analytics paradigm in business research. Journal of Business Research, n. 90, p. 186-195.

Duan, Y.; Cao, G.; Edwards, J. S. (2020). Understanding the impact of business analytics on innovation. European Journal of Operational Research, 281(3), p. 673-686.

Dubey, R.; Gunasekaran, A.; Childe, S. J. (2019). Big data analytics capability in supply chain agility: The moderating effect of organizational flexibility. Management Decision, 57(8), p. 2092-2112.

Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Method, 41(4), p. 1149-1160.

Fernando, F.; Engel, T. (2018). Big data and business analytic concepts: A literature review. Americas Conference on Information Systems. New Orleans. USA. 24.

Ferraris, A.; Mazzoleni, A.; Devalle, A.; Couturier, J. (2019). Big data analytics capabilities and knowledge management: Impact on firm performance. Management Decision, 57(8), p. 1923-1936.

Fleckenstein, M.; Fellows, L. (2018). Implementing a data strategy. In: M. Fleckenstein & L. Fellows, Modern data strategy. p. 35-54. Cham: Springer.

Frisk, J. E.; Bannister, F. (2017). Improving the use of analytics and big data by changing the decision-making culture: A design approach. Management Decision, 55(10), p. 2074-2088.

Ghasemaghaei, M.; Calic, G. (2020). Assessing the impact of big data on firm innovation performance: Big data is not always better data. Journal of Business Research, n. 108, p. 147-162.

Grover, V.; Chiang, R. H.; Liang, T. P.; Zhang, D. (2018). Creating strategic business value from big data analytics: A research framework. Journal of Management Information Systems, 35(2), p. 388-423.

Hair, J. F.; Hult, G.; Ringle, C.; Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM). 2 ed. Los Angeles: Sage.

Hair, J. F.; Risher, J. J.; Sarstedt, M.; Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), p. 2-24.

Harman, H. H. (1976). Modern factor analysis. Chicago: University of Chicago Press.

Harrison, T. M.; Luna-Reyes, L. F.; Pardo, T.; De Paula, N.; Najafabadi, M.; Palmer, J. (2019). The data firehose and AI in government: Why data management is a key to value and ethics. Annual International Conference on Digital Government Research. Dubai, United Arab Emirates. p. 171-176. ACM: New York, NY, USA. 20.

Henseler, J.; Ringle, C. M.; Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), p. 115-135.

Henseler, J.; Ringle, C. M.; Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. In: R. R. Sinkovics & P. N. Ghauri. (Eds.). New challenges to international marketing. p. 277-319. Bingley, UK: Emerald Group Publishing.

Hu, L.; Bentler, P. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), p. 1-55.

Keywell, B. (2020). Your board needs a data-integrity committee. Harvard Business Review. https://hbr.org/2020/10/your-board-needs-a-data-integrity-committee.

Khatri, V.; Brown, C. V. (2010). Designing data governance. Communications of the ACM, 53(1), p. 148-152.

Kitchens, B.; Dobolyi, D.; Li, J.; Abbasi, A. (2018). Advanced customer analytics: Strategic value through integration of relationship-oriented big data. Journal of Management Information Systems, 35(2), p. 540-574.

Koltay, T. (2016). Data governance, data literacy and the management of data quality. IFLA Journal, 42(4), p. 303-312.

Lillie, T.; Eybers, S. (2018). Identifying the constructs and agile capabilities of data governance and data management: A review of the literature. In: K. Krauss, Turpin, M. Naude F. (eds.). Locally Relevant ICT Research. IDIA 2018. Communications in Computer and Information Science. p. 313-326. Cham: Springer.

Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. (2019). Big data analytics and firm performance: Findings from a mixed-method approach. Journal of Business Research, n. 98, p. 261-276.

Mikalef, P.; Krogstie, J.; Pappas, I. O.; Pavlou, P. (2020). Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities. Information & Management, 57(2), p. 103-169.

Mikalef, P.; Pateli, A. (2017). Information technology-enabled dynamic capabilities and their indirect effect on competitive performance: Findings from PLS-SEM and fsQCA. Journal of Business Research, 70, p. 1-16.

Nielsen, O. B. (2017). A comprehensive review of data governance literature. IRIS: Selected Papers of the Information Systems Research Seminar in Scandinavia, (8), p. 120-133.

Nokkala, T.; Salmela, H.; Toivonen, J. (2019). Data governance in digital platforms. Americas Conference on Information Systems. Cancun, México. 25.

Plomp, E.; Dintzner, N.; Teperek, M.; Dunning, A. (2019). Cultural obstacles to research data management and sharing at TU Delft. Insights, 32(1), p. 1-11.

Plotkin, D. (2020). Data stewardship: An actionable guide to effective data management and data governance. London, UK: Elsevier.

Rialti, R.; Marzi, G.; Ciappei, C.; Busso, D. (2019). Big data and dynamic capabilities: A bibliometric analysis and systematic literature review. Management Decision, 57(8), p. 2052-2068.

Richards, G.; Yeoh, W.; Chong, A. Y. L.; Popovič, A. (2019). Business intelligence effectiveness and corporate performance management: An empirical analysis. Journal of Computer Information Systems, 59(2), p. 188-196.

Riggins, F. J.; Klamm, B. K. (2017). Data governance case at KrauseMcMahon LLP in an era of self-service BI and big data. Journal of Accounting Education, n. 38, p. 23-36.

Rosenbaum, S. (2010). Data governance and stewardship: Designing data stewardship entities and advancing data access. Health Services Research, 45(5), p. 1442-1455.

Seddon, P. B.; Constantinidis, D.; Tamm, T.; Dod, H. (2017). How does business analytics contribute to business value? Information Systems Journal, 27(3), p. 237-269.

Surbakti, F. P. S.; Wang, W.; Indulska, M.; Sadiq, S. (2020). Factors influencing effective use of big data: A research framework. Information & Management, 57(1), p. 103-146.

Tabesh, P.; Mousavidin, E.; Hasani, S. (2019). Implementing big data strategies: A managerial perspective. Business Horizons, 62(3), p. 347-358.

Tallon, P. P.; Ramirez, R. V.; Short, J. E. (2013). The information artifact in IT governance: Toward a theory of information governance. Journal of Management Information Systems, 30(3), p. 141-178.

Thompson, N.; Ravindran, R.; Nicosia, S. (2015). Government data does not mean data governance: Lessons learned from a public sector application audit. Government Information Quarterly, 32(3), p. 316-322.

Urbinati, A.; Bogers, M.; Chiesa, V.; Frattini, F. (2019). Creating and capturing value from big data: A multiple-case study analysis of provider companies. Technovation, n. 84, p. 21-36.

Wamba, S. F.; Akter, S. (2019). Understanding supply chain analytics capabilities and agility for data-rich environments. International Journal of Operations & Production Management, 39(6-7-8), p. 887-912.

Wamba, S. F.; Gunasekaran, A.; Akter, S.; Ren, S. J. F.; Dubey, R.; Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, n. 70, p. 356-365.

Weeserik, B. P.; Spruit, M. (2018). Improving operational risk management using business performance management technologies. Sustainability, 10(3), p. 640-659.

Zarkadakis, G. (2020). “Data trusts” could be the key to better AI. Harvard Business Review. https://hbr.org/2020/11/datatrusts-could-be-the-key-to-better-ai

Zhang, Z.; Zyphur, M. J.; Preacher, K. J. (2009). Testing multilevel mediation using hierarchical linear models. Problems and solutions. Organizational Research Methods, 12(4), p. 695-719.

Zhao, X.; Lynch, J. G.; Chen, Q. (2010). Reconsidering Baron and Kenny: Myths and truths about mediation analysis. Journal of Consumer Research, n. 37, p. 197-206.