Agarwal, V., & Taffler, R. J. (2007). Twenty-five years of the Taffler z-score model: Does it really have predictive ability? Accounting and Business Research, 37(4), 285-300. https://doi.org/10.10 80/00014788.2007.9663313
Ahmadpour Kasgari, A., Divsalar, M., Javid, M. R., & Ebrahimian, S. J. (2013). Prediction of bankruptcy Iranian corporations through artificial neural network and Probit-based analyses. Neural Computing and Applications, 23(3-4), 927-936. https://doi.org/10.1007/s00521-012-1017-z
Alaka, H. A., Oyedele, L. O., Owolabi, H. A., Kumar, V., Ajayi, S. O., Akinade, O. O., & Bilal, M. (2018). Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems with Applications, 94, 164-184. https://doi.org/10.1016/j.eswa.2017.10.040
Alaminos, D., & Fernández, M. Á. (2019). Why do football clubs fail financially?A financial distress prediction model for European professional football industry. PLOS ONE, 14(12), e0225989. https://doi.org/10.1371/journal.pone.0225989
Alm, J., & Storm, R. K. (2019). Isomorphic Forces and Professional Soccer Standardizations: Instruments of Governance for Municipal Investments? International Journal of Public Administration, 42(3), 185-194. https://doi.org/10.1080/01900692.2017.1422746
Al-shayea, Q. K., El-refae, G. a, & El-itter, S. F. (2010). Neural Networks in Bank Insolvency Prediction. IJCSNS International Journal of Computer Science and Network Security, v. 10, n. 5, p. 240-245.
Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and The Prediction Of Corporate Bankruptcy. The Journal of Finance, XXIII(4), 589-609.
Altman, E. I., & Hotchkiss, E. (2006). Corporate financial distress and bankruptcy. In Foundations and Trends in Finance. (Vol. 5). Wiley.
Azme Khamis. (2001). The Effects of Outliers Data on Neural Network Performance. Journal of Applied Sciences, 14(17), 1394-1398. https://doi.org/10.3923/jas.2005.1394.1398
Balcaen, S., & Ooghe, H. (2006). 35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems. The British Accounting Review, 38(1), 63-93. https://doi.org/10.1016/j.bar.2005.09.001
Barabanov, R., & Nakamura, W. T. (2019). O intangível nos clubes brasileiros : uma análise dos gastos com jogadores nas demonstrações contábeis. p. 119-133.
Barajas, Á., & Rodríguez, P. (2010). Spanish football clubs’ finances: Crisis and player salaries. International Journal of Sport Finance, 5(1), 52-66.
Barajas, A., & Rodriguez, P. (2014). Spanish football in need of financial therapy: Cut expenses and inject capital. International Journal of Sport Finance, 9(1), 73-90.
Beck, M. W. (2018). NeuralNetTools: Visualization and analysis tools for neural networks. Journal of Statistical Software, 85(11), 1-20. https://doi.org/10.18637/jss.v085.i11
Beech, J., Horsman, S., & Magraw, J. (2010). Insolvency events among English football clubs. International Journal of Sports Marketing and Sponsorship, 11(3), 236-249. https://doi.org/10.1108/IJSMS-11-03-2010-B006
Bellovary, J., Giacomino, D., & Akers, M. D. (2007). A Review of Bankruptcy Prediction Studies: A Review of Bankruptcy Prediction Studies: 1930 to Present. Journal of Financial Education, 33, 1-42.
Bishop, C. M. (1996). Neural Networks for Pattern Recognition. Oxford University Press.
Coelho, E. G., Edwards, C. M., Scherer, L. M., & Colauto, R. D. (2017). Gerenciamento de resultado em empresas insolventes: um estudo com os países do Brics. Enfoque: Reflexão Contábil, 36(2), 95. https://doi.org/10.4025/enfoque.v36i2.31765 Dantas, M G da S., Machado, M. A. V., & Macedo, M A da S. (2015). FATORES DETERMINANTES DA EFICIÊNCIA DOS CLUBES DE FUTEBOL DO BRASIL. Advances in Scientific and Applied Accounting, 8(1), 113-132. https://doi.org/10.14392/asaa.2015080106 Dias, P., & Monteiro, P. (2020). Sports Marketing and Perceived Value: an application of the conjoint analysis in the Fan Membership Programs of Football. Brazilian Business Review, 17(3), 253-274. https://doi.org/10.15728/bbr.2020.17.3.1 Ecer, F., & Boyukaslan, A. (2014). Measuring Performances of Football Clubs Using Financial Ratios: The Gray Relational Analysis Approach. American Journal of Economics, 4(1), 62-71. https://doi. org/10.5923/j.economics.20140401.06
Evans, R., Walters, G., & Tacon, R. (2019). Assessing the effectiveness of financial regulation in the English Football League: “The dog that didn’t bark.” Accounting, Auditing and Accountability Journal, 32(7), 1876-1897. https://doi.org/10.1108/AAAJ-12-2017-3288
Freestone, C. J., & Manoli, A. E. (2017). Financial fair play and competitive balance in the Premier League. Sport, Business and Management: An International Journal, 7(2), 175-196. https://doi. org/10.1108/SBM-10-2016-0058
Gajowniczek, K., Orłowski, A., & Ząbkowski, T. (2019). Insolvency modeling with generalized entropy cost function in neural networks. Physica A: Statistical Mechanics and Its Applications, n. 526, p. 120-730. https://doi.org/10.1016/j.physa.2019.03.095
GloboEsporte.com. (2019). Globoesporte.com.
Gool, S. (2019). Sr. Gool. http://www.srgoool.com.br
Guo, F., Kubick, T. R., & Masli, A. (2018). The effects of restatements for misreporting on auditor scrutiny of peer firms. Accounting Horizons, 32(1), 65-85. https://doi.org/10.2308/acch-51934
Gutiérrez-Fernández, M., Talavero-Álvarez, F. J., & Coca-Pérez, J. L. (2017). Economic and Financial Analysis of Bankruptcy of Football Teams. In M. Peris-Ortiz, J. Álvarez-García, & M. de la C. Del Río-Rama. (Eds.), Sports Management as an Emerging Economic Activity. p. 155-182. https://doi.org/10.1007/978-3-319-63907-9_10
Heaton, J. (2012). Introduction to the Math of Neural Networks. Heaton Research. Inc. Kanitz, S. C. (1976). Indicadores contábeis financeiros – previsão de insolvência: a experiência da pequena e média empresa brasileira. Universidade de São Paulo.
Lago, U., Simmons, R., & Szymanski, S. (2006). The Financial Crisis in European Football. Journal of Sports Economics, 7(1), 3-12. https://doi.org/10.1177/1527002505282871
Martins, E., Diniz, J. A., & Miranda, G. J. (2017). Análise avançada das demonstrações contábeis: Uma abordagem crítica. Atlas.
Ogol. (2019). Ogol. http://www.ogol.com.br/
Pereira, M. C. (2019). Fim da gastança maluca no futebol? CBF quer Fair Play financeiro já em 2020. Retrieved January 5, 2020, from UOL Esporte website: https://blogdomaurocezar.blogosfera.uol.com.br/2019/02/19/fim-da-gastanca-maluca-no-futebol-cbf-quer-fair-play-financeiro-ja-em-2020/
Petrocilo, C. (2019). Clubes da Série A devem R$ 1,8 bilhão para a União; veja ranking. Retrieved September 9, 2019, from Folha de São Paulo website: https://www1.folha.uol.com.br/esporte/2019/04/clubes-da-serie-a-devem-r-18-bilhao-para-a-uniao-veja-ranking.shtml
Plumley, D., Wilson, R., & Ramchandani, G. (2017). Towards a model for measuring holistic performance of professional Football clubs. Soccer & Society, 18(1), 16-29. https://doi.org/10.1080/14660970.2014.980737
Plumley, D., Wilson, R., & Shibli, S. (2017). A Holistic Performance Assessment of English Premier League Football Clubs 1992-2013. Journal of Applied Sport Management, 9(1). https://doi.org/10.18666/jasm-2017-v9-i1-7353
Ruta, D., Lorenzon, L., & Sironi, E. (2019). The relationship between governance structure and football club performance in Italy and England. Sport, Business and Management: An International Journal. (ahead-of-print). https://doi.org/10.1108/sbm-10-2018-0081
Scelles, N., Szymanski, S., & Dermit-Richard, N. (2018). Insolvency in French soccer: the case of payment failure. Journal of Sports Economics, 19(5), 603-624. https://doi.org/10.1177/1527002516674510
Silva, J. O. da, Wienhage, P., Souza, R. P. S. de, Bezerra, F. A., & Lyra, R. L. W. C. de. (2012). Capacidade Preditiva De Modelos De Insolvência Com Base Em Números Contábeis E Dados Descritivos. Revista de Educação e Pesquisa Em Contabilidade (REPeC), 6(3), 246-261. https://doi.org/10.17524/repec.v6i3.268 Szymanski, S. (2015). Long-term and short-term causes of insolvency and English football. In: The Economics of Competitive Sports. p. 74-83. https://doi.org/10.4337/9781783474769
Szymanski, S. (2017). Entry into exit: insolvency in English professional football. Scottish Journal of Political Economy, 64(4), 419-444. https://doi.org/10.1111/sjpe.12134
Szymanski, S., & Smith, R. (1997). The English football industry: Profit, performance and industrial structure. International Review of Applied Economics, 11(1), 135-153. https://doi. org/10.1080/02692179700000008
Szymanski, S., & Weimar, D. (2019). Insolvencies in professional football: A German Sonderweg? International Journal of Sport Finance, 14(1), 54-68. https://doi.org/10.32731/IJSF.141.022019.05
Taylor, M., & Koning, M. (2017). Machine Learning with Neural Networks: An In-depth Visual Introduction with Python: Make Your Own Neural Network in Python: A Simple Guide on Machine Learning with Neural Networks. (B. W. Media, Ed.).
Tseng, F. M., & Hu, Y. C. (2010). Comparing four bankruptcy prediction models: Logit, quadratic interval logit, neural and fuzzy neural networks. Expert Systems with Applications, 37(3), 1846-1853. https://doi.org/10.1016/j.eswa.2009.07.08118642
Wilson, R. L., & Sharda, R. (1994). Bankruptcy prediction using neural networks. Decision Support Systems, 11(5), 545-557. https://doi.org/10.1016/0167-9236(94)90024-8
Wilson, R., Plumley, D., & Ramchandani, G. (2013). The relationship between ownership structure and club performance in the English Premier League. Sport, Business and Management: An International Journal, 3(1), 19-36. https://doi.org/10.1108/20426781311316889