Insolvência em Clubes de Futebol Brasileiros: Proposição de Modelos Baseados em Redes Neurais

ID:
64477
Resumo:
A literatura aponta que clubes de futebol enfrentam dificuldades financeiras, o que pode levá-los à insolvência. Modelos buscam prevê-la para organizações de variados setores, mas apenas recentemente foram formulados para clubes europeus. Assim, este estudo tem como objetivo propor modelos de previsão de insolvência para clubes brasileiros de futebol. A partir do ranking elaborado pela Confederação Brasileira de Futebol, os 35 que divulgaram suas demonstrações contábeis e notas explicativas no período de 2011 a 2018 foram analisados. Vale-se de indicadores econômico-financeiros e esportivos bem como modelagem baseada em redes neurais para elaboração dos modelos. Os resultados indicam que as variáveis liquidez imediata, capital circulante líquido, giro do ativo e desempenho esportivo no Campeonato Brasileiro foram importantes na predição da insolvência em pelo menos um dos modelos. O estudo contribui para a literatura sobre insolvência de clubes de futebol por meio de modelos capazes de predizê-la com acurácia a partir de indicadores econômico-financeiros e esportivos.
Citação ABNT:
MINATTO, F.; BORBA, J. A. Insolvência em Clubes de Futebol Brasileiros: Proposição de Modelos Baseados em Redes Neurais. Brazilian Business Review, v. 18, n. 6, p. 624-642, 2021.
Citação APA:
Minatto, F., & Borba, J. A. (2021). Insolvência em Clubes de Futebol Brasileiros: Proposição de Modelos Baseados em Redes Neurais. Brazilian Business Review, 18(6), 624-642.
DOI:
http://dx.doi.org/10.15728/bbr.2021.18.6.2
Link Permanente:
https://www.spell.org.br/documentos/ver/64477/insolvencia-em-clubes-de-futebol-brasileiros--proposicao-de-modelos-baseados-em-redes-neurais/i/pt-br
Tipo de documento:
Artigo
Idioma:
Português
Referências:
Agarwal, V., & Taffler, R. J. (2007). Twenty-five years of the Taffler z-score model: Does it really have predictive ability? Accounting and Business Research, 37(4), 285-300. https://doi.org/10.10 80/00014788.2007.9663313

Ahmadpour Kasgari, A., Divsalar, M., Javid, M. R., & Ebrahimian, S. J. (2013). Prediction of bankruptcy Iranian corporations through artificial neural network and Probit-based analyses. Neural Computing and Applications, 23(3-4), 927-936. https://doi.org/10.1007/s00521-012-1017-z

Alaka, H. A., Oyedele, L. O., Owolabi, H. A., Kumar, V., Ajayi, S. O., Akinade, O. O., & Bilal, M. (2018). Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems with Applications, 94, 164-184. https://doi.org/10.1016/j.eswa.2017.10.040

Alaminos, D., & Fernández, M. Á. (2019). Why do football clubs fail financially?A financial distress prediction model for European professional football industry. PLOS ONE, 14(12), e0225989. https://doi.org/10.1371/journal.pone.0225989

Alm, J., & Storm, R. K. (2019). Isomorphic Forces and Professional Soccer Standardizations: Instruments of Governance for Municipal Investments? International Journal of Public Administration, 42(3), 185-194. https://doi.org/10.1080/01900692.2017.1422746

Al-shayea, Q. K., El-refae, G. a, & El-itter, S. F. (2010). Neural Networks in Bank Insolvency Prediction. IJCSNS International Journal of Computer Science and Network Security, v. 10, n. 5, p. 240-245.

Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and The Prediction Of Corporate Bankruptcy. The Journal of Finance, XXIII(4), 589-609.

Altman, E. I., & Hotchkiss, E. (2006). Corporate financial distress and bankruptcy. In Foundations and Trends in Finance. (Vol. 5). Wiley.

Azme Khamis. (2001). The Effects of Outliers Data on Neural Network Performance. Journal of Applied Sciences, 14(17), 1394-1398. https://doi.org/10.3923/jas.2005.1394.1398

Balcaen, S., & Ooghe, H. (2006). 35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems. The British Accounting Review, 38(1), 63-93. https://doi.org/10.1016/j.bar.2005.09.001

Barabanov, R., & Nakamura, W. T. (2019). O intangível nos clubes brasileiros : uma análise dos gastos com jogadores nas demonstrações contábeis. p. 119-133.

Barajas, Á., & Rodríguez, P. (2010). Spanish football clubs’ finances: Crisis and player salaries. International Journal of Sport Finance, 5(1), 52-66.

Barajas, A., & Rodriguez, P. (2014). Spanish football in need of financial therapy: Cut expenses and inject capital. International Journal of Sport Finance, 9(1), 73-90.

Beck, M. W. (2018). NeuralNetTools: Visualization and analysis tools for neural networks. Journal of Statistical Software, 85(11), 1-20. https://doi.org/10.18637/jss.v085.i11

Beech, J., Horsman, S., & Magraw, J. (2010). Insolvency events among English football clubs. International Journal of Sports Marketing and Sponsorship, 11(3), 236-249. https://doi.org/10.1108/IJSMS-11-03-2010-B006

Bellovary, J., Giacomino, D., & Akers, M. D. (2007). A Review of Bankruptcy Prediction Studies: A Review of Bankruptcy Prediction Studies: 1930 to Present. Journal of Financial Education, 33, 1-42.

Bishop, C. M. (1996). Neural Networks for Pattern Recognition. Oxford University Press.

Coelho, E. G., Edwards, C. M., Scherer, L. M., & Colauto, R. D. (2017). Gerenciamento de resultado em empresas insolventes: um estudo com os países do Brics. Enfoque: Reflexão Contábil, 36(2), 95. https://doi.org/10.4025/enfoque.v36i2.31765

Dantas, M G da S., Machado, M. A. V., & Macedo, M A da S. (2015). FATORES DETERMINANTES DA EFICIÊNCIA DOS CLUBES DE FUTEBOL DO BRASIL. Advances in Scientific and Applied Accounting, 8(1), 113-132. https://doi.org/10.14392/asaa.2015080106

Dias, P., & Monteiro, P. (2020). Sports Marketing and Perceived Value: an application of the conjoint analysis in the Fan Membership Programs of Football. Brazilian Business Review, 17(3), 253-274. https://doi.org/10.15728/bbr.2020.17.3.1

Ecer, F., & Boyukaslan, A. (2014). Measuring Performances of Football Clubs Using Financial Ratios: The Gray Relational Analysis Approach. American Journal of Economics, 4(1), 62-71. https://doi. org/10.5923/j.economics.20140401.06

Evans, R., Walters, G., & Tacon, R. (2019). Assessing the effectiveness of financial regulation in the English Football League: “The dog that didn’t bark.” Accounting, Auditing and Accountability Journal, 32(7), 1876-1897. https://doi.org/10.1108/AAAJ-12-2017-3288

Freestone, C. J., & Manoli, A. E. (2017). Financial fair play and competitive balance in the Premier League. Sport, Business and Management: An International Journal, 7(2), 175-196. https://doi. org/10.1108/SBM-10-2016-0058

Gajowniczek, K., Orłowski, A., & Ząbkowski, T. (2019). Insolvency modeling with generalized entropy cost function in neural networks. Physica A: Statistical Mechanics and Its Applications, n. 526, p. 120-730. https://doi.org/10.1016/j.physa.2019.03.095

GloboEsporte.com. (2019). Globoesporte.com.

Gool, S. (2019). Sr. Gool. http://www.srgoool.com.br

Guo, F., Kubick, T. R., & Masli, A. (2018). The effects of restatements for misreporting on auditor scrutiny of peer firms. Accounting Horizons, 32(1), 65-85. https://doi.org/10.2308/acch-51934

Gutiérrez-Fernández, M., Talavero-Álvarez, F. J., & Coca-Pérez, J. L. (2017). Economic and Financial Analysis of Bankruptcy of Football Teams. In M. Peris-Ortiz, J. Álvarez-García, & M. de la C. Del Río-Rama. (Eds.), Sports Management as an Emerging Economic Activity. p. 155-182. https://doi.org/10.1007/978-3-319-63907-9_10

Heaton, J. (2012). Introduction to the Math of Neural Networks. Heaton Research. Inc. Kanitz, S. C. (1976). Indicadores contábeis financeiros – previsão de insolvência: a experiência da pequena e média empresa brasileira. Universidade de São Paulo.

Lago, U., Simmons, R., & Szymanski, S. (2006). The Financial Crisis in European Football. Journal of Sports Economics, 7(1), 3-12. https://doi.org/10.1177/1527002505282871

Martins, E., Diniz, J. A., & Miranda, G. J. (2017). Análise avançada das demonstrações contábeis: Uma abordagem crítica. Atlas.

Ogol. (2019). Ogol. http://www.ogol.com.br/

Pereira, M. C. (2019). Fim da gastança maluca no futebol? CBF quer Fair Play financeiro já em 2020. Retrieved January 5, 2020, from UOL Esporte website: https://blogdomaurocezar.blogosfera.uol.com.br/2019/02/19/fim-da-gastanca-maluca-no-futebol-cbf-quer-fair-play-financeiro-ja-em-2020/

Petrocilo, C. (2019). Clubes da Série A devem R$ 1,8 bilhão para a União; veja ranking. Retrieved September 9, 2019, from Folha de São Paulo website: https://www1.folha.uol.com.br/esporte/2019/04/clubes-da-serie-a-devem-r-18-bilhao-para-a-uniao-veja-ranking.shtml

Plumley, D., Wilson, R., & Ramchandani, G. (2017). Towards a model for measuring holistic performance of professional Football clubs. Soccer & Society, 18(1), 16-29. https://doi.org/10.1080/14660970.2014.980737

Plumley, D., Wilson, R., & Shibli, S. (2017). A Holistic Performance Assessment of English Premier League Football Clubs 1992-2013. Journal of Applied Sport Management, 9(1). https://doi.org/10.18666/jasm-2017-v9-i1-7353

Ruta, D., Lorenzon, L., & Sironi, E. (2019). The relationship between governance structure and football club performance in Italy and England. Sport, Business and Management: An International Journal. (ahead-of-print). https://doi.org/10.1108/sbm-10-2018-0081

Scelles, N., Szymanski, S., & Dermit-Richard, N. (2018). Insolvency in French soccer: the case of payment failure. Journal of Sports Economics, 19(5), 603-624. https://doi.org/10.1177/1527002516674510

Silva, J. O. da, Wienhage, P., Souza, R. P. S. de, Bezerra, F. A., & Lyra, R. L. W. C. de. (2012). Capacidade Preditiva De Modelos De Insolvência Com Base Em Números Contábeis E Dados Descritivos. Revista de Educação e Pesquisa Em Contabilidade (REPeC), 6(3), 246-261. https://doi.org/10.17524/repec.v6i3.268

Szymanski, S. (2015). Long-term and short-term causes of insolvency and English football. In: The Economics of Competitive Sports. p. 74-83. https://doi.org/10.4337/9781783474769

Szymanski, S. (2017). Entry into exit: insolvency in English professional football. Scottish Journal of Political Economy, 64(4), 419-444. https://doi.org/10.1111/sjpe.12134

Szymanski, S., & Smith, R. (1997). The English football industry: Profit, performance and industrial structure. International Review of Applied Economics, 11(1), 135-153. https://doi. org/10.1080/02692179700000008

Szymanski, S., & Weimar, D. (2019). Insolvencies in professional football: A German Sonderweg? International Journal of Sport Finance, 14(1), 54-68. https://doi.org/10.32731/IJSF.141.022019.05

Taylor, M., & Koning, M. (2017). Machine Learning with Neural Networks: An In-depth Visual Introduction with Python: Make Your Own Neural Network in Python: A Simple Guide on Machine Learning with Neural Networks. (B. W. Media, Ed.).

Tseng, F. M., & Hu, Y. C. (2010). Comparing four bankruptcy prediction models: Logit, quadratic interval logit, neural and fuzzy neural networks. Expert Systems with Applications, 37(3), 1846-1853. https://doi.org/10.1016/j.eswa.2009.07.08118642

Wilson, R. L., & Sharda, R. (1994). Bankruptcy prediction using neural networks. Decision Support Systems, 11(5), 545-557. https://doi.org/10.1016/0167-9236(94)90024-8

Wilson, R., Plumley, D., & Ramchandani, G. (2013). The relationship between ownership structure and club performance in the English Premier League. Sport, Business and Management: An International Journal, 3(1), 19-36. https://doi.org/10.1108/20426781311316889