Modelagem e Previsão da Procura por Turismo Internacional em Puno-Peru Outros Idiomas

ID:
56197
Resumo:
A indústria do turismo no Peru gera aproximadamente 1.1 milhão de empregos e contribui com 3.3% do PIB, o que a torna uma de suas principais atividades econômicas, portanto o turismo não é mais apenas uma atividade comercial mas é uma ferramenta para o desenvolvimento da população peruana, especialmente nas regiões com alto índice de pobreza e muitas atrações turísticas como é o caso da região de Puno com uma taxa de pobreza de 24.2% localizada no sul do país e com muitas atrações históricas, naturais, cultural e gastronômico. O objetivo desta pesquisa é modelar a procura de turistas internacionais que visitam Puno utilizando a metodologia ARIMA de Box-Jenkins, para este estudo considera informações mensais de chegadas de turistas internacionais entre os anos 2003 e 2017. Finalmente, usando estatísticas MAPE, Z, R, Critério de Informação de Akaike (AIC) e Critério de Schwarz (SC) se encontrou ao modelo SARIMA (6, 1, 24)(1, 0, 1)12 como o mais eficiente para a modelação e previsão da procura do Turismo Internacional na região de Puno.
Citação ABNT:
BLANCO, L. F. L.; HANCCO, R. W. M. Modelagem e Previsão da Procura por Turismo Internacional em Puno-Peru. Revista Brasileira de Pesquisa em Turismo, v. 14, n. 1, p. 34-55, 2020.
Citação APA:
Blanco, L. F. L., & Hancco, R. W. M. (2020). Modelagem e Previsão da Procura por Turismo Internacional em Puno-Peru. Revista Brasileira de Pesquisa em Turismo, 14(1), 34-55.
DOI:
http://dx.doi.org/10.7784/rbtur.v14i1.1606
Link Permanente:
https://www.spell.org.br/documentos/ver/56197/modelagem-e-previsao-da-procura-por-turismo-internacional-em-puno-peru/i/pt-br
Tipo de documento:
Artigo
Idioma:
Português
Referências:
Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705

Akal, M. (2004). Forecasting Turkey’s tourism revenues by ARMAX model. Tourism Management, 25(5), 565– 580. https://doi.org/10.1016/j.tourman.2003.08.001

Athanasopoulos, G., & Hyndman, R. J. (2008). Modelling and forecasting Australian domestic tourism. Tourism Management, 29 (October 2006), 19–31. https://doi.org/https://doi.org/10.1016/j.tourman.2007.04.009

Baillie, R. (1996). Long Memory Processes and Fractional Integration in Econometrics. Journal of Econometrics, 73(1), 5–59. https://doi.org/10.1016/0304-4076(95)01732-1

Banco Central de Reserva del Perú BCRP. Gerencia Central de Estudios Económicos (2018). Producto Bruto Interno por sectores productivos (millones S/ 2007). Retrieved March 26, 2019, from https://estadisticas.bcrp.gob.pe/estadisticas/series/anuales/resultados/PM05000AA/html

Banco Central de Reserva del Perú – BCRP. Sucursal Puno. (2018). Síntesis de Actividad Económica, varios meses. Retrieved January 20, 2018, from http://www.bcrp.gob.pe/51-sucursales/sede-regional-puno.html

Botti, L.; Peypoch, N.; Randriamboarison, R.; & Solonandrasana, B. (2007). An Econometric Model of Tourism Demand in France. Tourismos: An International Multidisciplinary Journal of Tourism, 2(1), 115–126. Retrieved from http://mpra.ub.uni-muenchen.de/25390/

Box, G., & Jenkins, G. M. (1976). Time Series Analysis: forecasting and control. Oakland, California.

CAMARA. (2018). Cámara de Comercio de Lima Sector turismo representa 3.3% del PBI y genera 1.1 millones de empleos. Retrieved from https://www.camaralima.org.pe/repositorioaps/0/0/par/r820_2/informe economico.pdf

Cayo, N., & Apaza, A. (2017). Evaluación de la ciudad de Puno como destino turístico Perú. Comuni@cción, 8(2), 116–124. Retrieved from http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S221971682017000200005

Chaitip, P., & Chaiboonsri, C. (2015). Forecasting with X-12-ARIMA y ARFIMA: International Tourist Arrivals to India. Annals of the University of Petroşani, Economics, 9(3), 147–162. Retrieved from http://repositorio.ana.gob.pe/handle/ANA/1564

Chan, F., Lim, C., & McAleer, M. (2005). Modelling multivariate international tourism demand and volatility. Tourism Management, 26(3), 459–471. https://doi.org/10.1016/j.tourman.2004.02.013

Chang, C., Sriboonchitta, S., & Wiboonpongse, A. (2009). Modelling and forecasting tourism from East Asia to Thailand under temporal and spatial aggregation, Mathematics and Computers in Simulation, 79, 1730– 1744. https://doi.org/10.1016/j.matcom.2008.09.006

Chokethaworn, K., Wiboonponse, A., Sriboonchitta, S., Sriboonjit, J., Chaiboonsri, C., & Chaitip, P. (2010). International Tourists’ Expenditures in Thailand: A Modelling of the ARFIMA-FIGARCH Approach. The Thailand Econometrics Society, 10(January), 85–98.

Chow, G. (1960). Tests of Equality Between Sets of Coefficients in Two Linear Regressions. Econometrica, 28(3), 591–605. https://doi.org/10.2307/1913018

Chu, F. L. (2008). A Fractionally Integrated Autoregressive Moving Average Approach to Forecasting Tourism Demand. Tourism Management, 29(1), 79–88. https://doi.org/10.1016/j.tourman.2007.04.003

CORREO. (2017). Turismo y empleo en la región Puno. Retrieved March 26, 2019, from https://diariocorreo.pe/peru/turismo-en-la-region-puno-genera-90-mil-empl-7289/

Coshall, J. T. (2009). Combining volatility and smoothing forecasts of UK demand for international tourism. Tourism Management, 30(4), 495–511. https://doi.org/10.1016/j.tourman.2008.10.010

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root. Journal of the American Statistical Association, 74(366), 427–431. https://doi.org/10.2307/2286348

du Preez, J., & Witt, S. F. (2003). Univariate versus multivariate time series forecasting: An application to international tourism demand. International Journal of Forecasting, 19(3), 435–451. https://doi.org/10.1016/S0169-2070(02)00057-2

Durbin, J., & Watson, G. S. (1950). Testing for Serial Correlation in Least Squares Regression. I. Biometrika Trust, 58(1), 409–428. https://doi.org/10.2307/2332391

Durbin, J., & Watson, G. S. (1971). Testing for serial correlation in least squares regression. III. Biometrika, 58(1), 1–19. https://doi.org/10.1093/biomet/58.1.1

GESTION. (2017). Perú: Llegada de turistas por país. Retrieved March 25, 2019, from https://gestion.pe/economia/llegaran-4-8-millones-turistas-internacionales-peru-ano-10-2018-258028

Granger, C., & Joyeux, R. (1980). An Introduction to Long-Memory Time Series Models and Fractional Differencing. Journal of Time Series Analysis, I(1), 15–29. https://doi.org/https://doi.org/10.1111/j.14679892.1980.tb00297.x

Greenidge, K. (2001). Forecasting Tourism Demand An STM Approach. Annals of Tourism Research, 28(1), 98–112. https://doi.org/https://10.1016/S0160-7383(00)00010-4

Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68(1), 165–176. https://doi.org/10.1093/biomet/68.1.165

INRENA. (1995) Evaluacion de la contaminacion del lago titicaca. Retrieved from http://repositorio.ana.gob.pe/handle/ANA/1564

Instituto Nacional de Estadística e Informática INEI (2018a). Pobreza por departamentos del Perú. Retrieved February 4, 2019, from https://www.inei.gob.pe/estadisticas/indice-tematico/living-conditions-and-poverty/

Instituto Nacional de Estadística e Informática INEI. (2018b). Peru, PBI por departamentos según actividades económicas. Retrieved March 26, 2019, from https://www.inei.gob.pe/estadisticas/indice-tematico/pbi-de-los-departamentos-segun-actividades-economicas-9110/

Jarque, C., & Bera, A. (1980). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters, 6(4), 255–259. https://doi.org/10.1016/0165-1765(81)90035-5

Jarque, C., & Bera, A. (1981). Efficient tests for normality, homoscedasticity and serial independence of regression residuals Monte Carlo Evidence. Journal of the American Statistical Association, 7, 313–318. https://doi.org/doi:10.1016/0165-1765(81)90035-5

Jarque, C., & Bera, A. (1987). A test for Normality of observations and Regression Residuals. International Statistical Review, 55(2), 163–172. https://doi.org/10.2307/1403192

Kwiatkowski, D.; Phillips, P.; Schmidt, P.; & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54(1–3), 159–178. https://doi.org/10.1016/03044076(92)90104-Y

Laurente, L. & Poma, R. (2016). Introducción a la teoría de las probabilidades (Primera Ed). Puno, Perú.

Law, R., & Au, N. (1999). A neural network model to forecast Japanese demand for travel to Hong Kong. Tourism Management, 20(1), 89–97. https://doi.org/10.1016/S0261-5177(98)00094-6

Lee, C. K.; Song, H. J.; & Mjelde, J. W. (2008). The forecasting of International Expo tourism using quantitative and qualitative techniques. Tourism Management, 29(6), 1084–1098. https://doi.org/10.1016/j.tourman.2008.02.007

Lewis, C. D. (1982). Industrial and business forecasting methods. London: Butterworths. Retrieved from http://interstat.statjournals.net/YEAR/2008/articles/0810005.pdf

Lim, C., & Mcaleer, M. (1999). A seasonal analysis of Malaysian tourist arrivals to Australia. Mathematics and Computers in Simulation, 48(4), 573–583. https://doi.org/https://10.1016/S0378-4754(99)00038-5

Ljung, G., & Box, G. (1978). Biometrika Trust On a Measure of Lack of Fit in Time Series Models. Biometrika, 65(2), 297–303. https://doi.org/https://doi.org/10.1093/biomet/65.2.297

Loganathan, N., & Ibrahim, Y. (2010). Forecasting International Tourism Demand in Malaysia Using Box Jenkins Sarima Application. South Asian Journal of Tourism and Heritage, 3(2), 50–60.

Mackinnon, J. (1996). Numerical Distribution Functions for Unit Root and Cointegration Tests. Journal of Applied Econometrics, 11(6), 601–618. https://doi.org/https://doi.org/10.1002/(SICI)10991255(199611)11:6<601::AID-JAE417>3.0.CO;2-T

Mamani, L. (2016). Impacto socioeconómico del turismo rural comunitario de Karina-Chucuito. Universidad Nacional del Altiplano. Retrieved from http://repositorio.unap.edu.pe/bitstream/handle/UNAP/1802/Articulo.pdf?sequence=1&isAllowed=y

MINCETUR. (2017a). Perú: Arribo de visitantes extranjeros a establecimientos de hospedaje, según región. Serie estadística 2003-2017. Retrieved January 17, 2018, from http://datosturismo.mincetur.gob.pe/appdatosTurismo/Content3.html

MINCETUR. (2017b). Perú: Llegada de turistas internacionales según país de residencia permanente. Retrieved March 25, 2019, from http://datosturismo.mincetur.gob.pe/appdatosTurismo/Content1.html

MiViaje. (2018). Descubre las islas de los uros en el lago Titicacaca Panel fotográfico. Retrieved March 25, 2019, from https://miviaje.com/las-islas-de-los-uros-lago-titicaca/

Nanthakumar, L., Subramaniam, T., & Kogid, M. (2012). Is “Malaysia Truly Asia”? Forecasting tourism demand from ASEAN using SARIMA approach. Tourismos, 7(1), 367–381. Retrieved from http://www.chios.aegean.gr/tourism/VOLUME_7_No1_art20.pdf

Organización Mundial del Turismo OMT. (2017). Panorama OMT del turismo internacional. Retrieved from http://www.e-unwto.org/doi/book/10.18111/9789284419043

Peiris, H. (2016). A Seasonal ARIMA Model of Tourism Forecasting: The Case of Sri Lanka. Journal of Tourism, Hospitality and Sports, 22, 98–109. Retrieved from https://www.iiste.org/Journals/index.php/JTHS/article/view/33831

Peiris, M. S., & Perera, B. J. C. (1988). On Prediction with Fractionally Differenced Arima Models. Journal of Time Series Analysis, 9(3), 215–220. https://doi.org/10.1111/j.1467-9892.1988.tb00465.x

Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335– 346. https://doi.org/10.1093/biomet/75.2.335

Psillakis, Z., Alkiviadis, P., & Kanellopoulos, D. (2009). Low cost inferential forecasting and tourism demand in accommodation industry. Tourismos: An International Multidisciplinary Journal of Tourism, 4(2), 47–68.

PUNO. (2017). Principales recursos turísticos em Puno. Retrieved from http://www.bcrp.gob.pe/docs/Sucursales/Puno/Puno-Atractivos.pdf

Ray, B. K. (1993). Modeling Long Memory Processes for Optimal Long Range Prediction. Journal of Time Series Analysis, 14(5), 511–525. https://doi.org/10.1111/j.1467-9892.1993.tb00161.x

Reisen, V. (1994). Estimation of the fractional difference parameter in the ARIMA (p,d,q) model using the smoothed periodogram. Journal of Time Series Analysis, 15(3), 335–350. https://doi.org/https://doi.org/10.1111/j.1467-9892.1994.tb00198.x

Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136

Shareef, R., & McAleer, M. (2005). Modelling International Tourism Demand and Volatility in Small Island Tourism Economies. International Journal of Tourism Research, 7(6), 313-333. https://doi.org/10.1002/jtr.538

Shitan, M. (2008). Time series modelling of tourist arrivals to Malaysia. Department of Mathematics, Faculty of Science, and Applied & Computational Statistics Laboratory, Institute for Mathematical Research, Universiti Putra Malaysia. Retrieved from http://interstat.statjournals.net/YEAR/2008/articles/0810005.pdf

Zhou, T., Bonham, C., & Gangnes, B. (2007). Modeling the supply and demand for tourism: a fully identified VECM approach. Department of Economics and University of Hawaii Economic Reserch Organization. University of Hawaii at Manoa. Working Paper No. 07-17, July 20, 2007. https://doi.org/10.1001/archinte.165.8.854