Relações entre correlação serial e volatilidade: existe o efeito LeBaron no Brasil? Outros Idiomas

ID:
31302
Resumo:
Este artigo examina a relação entre correlação serial e volatilidade nos retornos do índice Ibovespa, estendendo a evidência empírica do efeito LeBaron para ordens de correlação serial mais altas. Para a estimação da volatilidade, utilizamos modelos com heteroscedasticidade condicional. Para o cálculo da correlação serial, utilizamos uma estatística de razão de variância onde a defasagem é calculada endogenamente. Os resultados estão de acordo com alguns fatos estilizados da teoria de finanças comportamental e ajudam a explicar alguns fenômenos encontrados na literatura empírica, demonstrando que (i) a correlação serial dos retornos semanais está negativamente relacionada com volatilidade, (ii) essa relação negativa está presente nos retornos diários apenas se utilizarmos correlação serial de primeira ordem, e (iii) a crise de 2008 não intensificou esse efeito para retornos semanais, mas produziu uma relação positiva entre volatilidade e correlação serial para retornos diários.
Citação ABNT:
ELY, R. A.Relações entre correlação serial e volatilidade: existe o efeito LeBaron no Brasil?. Revista Brasileira de Finanças, v. 12, n. 1, p. 13-13, 2014.
Citação APA:
Ely, R. A.(2014). Relações entre correlação serial e volatilidade: existe o efeito LeBaron no Brasil?. Revista Brasileira de Finanças, 12(1), 13-13.
Link Permanente:
https://www.spell.org.br/documentos/ver/31302/relacoes-entre-correlacao-serial-e-volatilidade--existe-o-efeito-lebaron-no-brasil-/i/pt-br
Tipo de documento:
Artigo
Idioma:
Português
Referências:
Andrews, Donald W. K. (1991). Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation. Econometrica, 59(3), 817-858.

Ang, Andrew; Hodrick, Robert J.; Xing, Yuhang; & Zhang, Xiaoyan. (2006). The Cross-Section of Volatility and Expected Returns. The Journal of Finance, 61(1), 259-299.

Bianco, Simone; Corsi, Fulvio, & Reno, Roberto. (2009). Intraday LeBaron effects. Proceedings of the National Academy of Sciences, 106(28), 11439-11443.

Bollerslev, Tim. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307-327.

Cai, Jun. (1994). A Markov Model of Switching-Regime ARCH. Journal of Business & Economic Statistics, 12(3), 309-316.

Campbell, John Y.; & Hentschel, Ludger. (1992). No news is good news: An asymmetric model of changing volatility in stock returns. Journal of Financial Economics, 31(3), 281-318.

Chang, Chiao-Yi. (2009). The Volatility’s Asymmetrical Reaction to Serial Correlation: Evidences from America and Taiwan Cases. International Research Journal of Finance and Economics, 28, 98-103.

Chang, Eui Jung; Lima, Eduardo Jose´ Araujo; & Tabak, Benjamin Miranda. (2004). Testing for predictability in emerging equity markets. Emerging Markets Review, 5(3), 295-316.

Charles, Amelie; & Darne, Olivier. (2009). Variance-ratio tests of random walk: an overview. Journal of Economic Surveys, 23(3), 503-527.

Chen, Willa W.; & Deo, Rohit S. (2006). The variance ratio statistic at large horizons. Econometric Theory, 22(02), 206-234.

Choi, In. (1999). Testing the Random Walk Hypothesis for Real Exchange Rates. Journal of Applied Econometrics, 14(3), 293-308.

Chordia, Tarun; Roll, Richard; & Subrahmanyam, Avanidhar. (2008). Liquidity and market efficiency. Journal of Financial Economics, 87(2), 249-268.

Cochrane, John H. (1988). How Big Is the Random Walk in GNP? The Journal of Political Economy, 96(5), 893-920.

Corradi, Valentina; Distaso, Walter; & Fernandes, Marcelo. (2012). International market links and volatility transmission. Journal of Econometrics, 170(1), 117-141.

Doyle, John R.; & Chen, Catherine Huirong. (2009). The wandering weekday effect in major stock markets. Journal of Banking & Finance, 33(8), 1388-1399.

Ely, Regis Augusto. (2011). Returns Predictability and Stock Market Efficiency in Brazil. Brazilian Review of Finance, v. 9, 571-584.

Engle, Robert F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), 987-1007.

Escanciano, J. Carlos; & Lobato, Ignacio N. (2009). An automatic Portmanteau test for serial correlation. Journal of Econometrics, 151(2), 140-149.

Fama, Eugene F.; & French, Kenneth R. 1988. Permanent and Temporary Components of Stock Prices. The Journal of Political Economy, 96(2), 246-273.

Ferreira, Miguel A.; & Santa-Clara, Pedro. (2011). Forecasting stock market returns: The sum of the parts is more than the whole. Journal of Financial Economics, 100(3), 514-537.

Forbes, William P. (1996). Picking Winners? A Survey of the Mean Reversion and Overreaction of Stock Prices Literature. Journal of Economic Surveys, v. 10, 123-158.

French, Kenneth R. 1980. Stock returns and the weekend effect. Journal of Financial Economics, 8(1), 55-69.

Glosten, Lawrence R.; Jagannathan, Ravi; & Runkle, David E. (1993). On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. The Journal of Finance, 48(5), 1779-1801.

Hamilton, James D.; & Susmel, Raul. (1994). Autoregressive conditional heteroskedasticity and changes in regime. Journal of Econometrics, 64(1), 307-333.

Johnson, Simon; & Mitton, Todd. (2003). Cronyism and capital controls: evidence from Malaysia. Journal of Financial Economics, 67(2), 351-382.

Kim, Jae H. (2009). Automatic variance ratio test under conditional heteroskedasticity. Finance Research Letters, 6(3), 179-185.

Koutmos, Gregory. (1997). Feedback trading and the autocorrelation pattern of stock returns: further empirical evidence. Journal of International Money and Finance, 16(4), 625-636.

LeBaron, Blake. (1992). Some Relations Between Volatility and Serial Correlations in Stock Market Returns. The Journal of Business, 65(2), 199-219.

Lehmann, Bruce N. (1990). Fads, Martingales, and Market Efficiency. The Quarterly Journal of Economics, 105(1), 1-28.

Liu, Yanhui, Gopikrishnan; Parameswaran, Cizeau; Meyer, Peng; & Stanley, H. Eugene. (1999). Statistical properties of the volatility of price fluctuations. Physical Review E., 60(Aug), 1390-1400.

Lo, Andrew W.; & MacKinlay, A. Craig. (1988). Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test. The Review of Financial Studies, 1(1), 41-66.

Nelson, Daniel B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, 59(2), 347-370.

Pesaran, M. Hashem; & Timmermann, Allan. (1995). Predictability of Stock Returns: Robustness and Economic Significance. The Journal of Finance, 50(4), 1201-1228.

Samuelson, Paul Anthony. (1965). Proof that properly antecipated prices fluctuate randomly. Industrial Management Review, 6, 41-49.

Scheinkman, Jose´ A.; & LeBaron, Blake. (1989). Nonlinear Dynamics and Stock Returns. The Journal of Business, 62(3), 311-337.

Sentana, Enrique; & Wadhwani, Sushil. 1992. Feedback Traders and Stock Return Autocorrelations: Evidence from a Century of Daily Data. The Economic Journal, 102(411), 415-425.

Silvennoinen, Annastiina; & Terasvirta, Timo. (2009). Modeling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH Model. Journal of Financial Econometrics, 7(4), 373-411.

Venetis, loannis A.; & Peel, David. (2005). Non-linearity in stock index returns: the volatility and serial correlation relationship. Economic Modelling, 22(1), 1-19.

White, Halbert. (1982). Maximum Likelihood Estimation of Misspecified Models. Econometrica, 50(1), 1-25.

Zakoian, Jean-Michel. (1994. Threshold heteroskedastic models. Journal of Economic Dynamics and Control, 18(5), 931-955.