Avaliações numéricas das inferências no modelo Beta-Skew-t-EGARCH Outros Idiomas

ID:
38021
Resumo:
O modelo Beta-Skew-t-EGARCH foi recentemente proposto para modelar avolatilidade de retornos financeiros. A estimação dos parâmetros do modelo é feita via máxima verossimilhança. Esses estimadores possuem boas propriedades assintóticas, mas em amostras de tamanho finito seus desempenhos podem ser pobres. Com a finalidade de avaliar as propriedades em amostras de tamanho finito dos estimadores pontuais e do teste da razão de verossimilhanças proposto para testar a presença de dois componentes de volatilidade, realizou-se um estudo de simulações de Monte Carlo. Os resultados numéricos indicam que o estimadores de máxima verossimilhança de alguns parâmetros do modelo são consideravelmente viesados em amostras inferiores a 3000. A avaliação numérica do teste de dois componentes proposto, em termos de tamanho e poder do teste, evidenciou sua utilidade prática. Ao final do trabalho foi realizada uma aplicação a dados reais do teste de dois componentes proposto e do modelo Beta-Skew-t-EGARCH.
Citação ABNT:
MÜLLER, F. M.; BAYER, F. M. Avaliações numéricas das inferências no modelo Beta-Skew-t-EGARCH . Revista Brasileira de Finanças, v. 13, n. 1, p. 40-73, 2015.
Citação APA:
Müller, F. M., & Bayer, F. M. (2015). Avaliações numéricas das inferências no modelo Beta-Skew-t-EGARCH . Revista Brasileira de Finanças, 13(1), 40-73.
Link Permanente:
https://www.spell.org.br/documentos/ver/38021/avaliacoes-numericas-das-inferencias-no-modelo-beta-skew-t-egarch-/i/pt-br
Tipo de documento:
Artigo
Idioma:
Português
Referências:
Adrian, Tobias; Rosenberg, Joshua. 2008. Stock returns and volatility: pricing the short-run and long-run components of market risk. The Journal of Finance, 63(6), 2997-3030.

Aiube, Fernando Antonio Lucena. 2012. Modelos quantitativos em finanças: com enfoque em commodities. Bookman Companhia Editora Ltda.

Alexander, Carol; Lazar, Emese. 2006. Normal mixture GARCH (1,1): applications to exchange rate modelling. Journal of Applied Econometrics, 21(3), 307-336.

Andersen, Torben G.; Davis, Richard A.; KreiB, Jens-Peter; Mikosch, Thomas. (eds). 2009. Handbook of Financial Time Series. Springer.

Bentes, Sonia R. 2014. Measuring persistence in stock market volatility using the FIGARCH approach. Physica A: Statistical Mechanics and its Applications, v. 408, p. 190-197.

Bianchi, Carluccio; Giuli, Maria Elena De; Fantazzini, Dean; Maggi, Mario. 2011. Small sample properties of copula-GARCH modelling: a Monte Carlo study. Applied Financial Economics, 21(21), 1587-1597.

Blazsek, Szabolcs; Villatoro, Marco. 2015. Is Beta-t-EGARCH (1,1) superior to GARCH (1,1)? Applied Economics, 47(17), 1764-1774.

Bollerslev, Tim. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, v. 31, p. 307-327.

Bollerslev, Tim. 1987. A conditionally heteroskedastic time series model for speculative prices and rates of return. Review of Economics and Statistics, v. 69, p. 542-547.

Box, George E. P.; Pierce, David A. 1970. Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. Journal of the American Statistical Association, 65(332), 1509-1526.

Busch, Thomas. 2005. A robust LR test for the GARCH model. Economics Letters, 88(3), 358-364.

Casella, George; Berger, Roher L. 2002. Statistical inference. 2 ed. Duxbury.

Chan, Felix; McAleer, Michael. 2002. Maximum likelihood estimation of STAR and STAR-GARCH models: theory and Monte Carlo evidence. Journal of Applied Econometrics, 17(5), 509-534.

Chen, Shyh-Wei; Shen, Chung-Hua. 2004. GARCH, jumps and permanent and transitory components of volatility: the case of the Taiwan exchange rate. Mathematics and Computers in Simulation, 67(3), 201-216.

Cho, Jang Hyung; Elshahat, A. F. 2011. Predicting time-varying longrun variance - modified component GARCH model approach. Journal of Financial and Economic Practice, 11(1), 52-68.

Christoffersen, Peter, Jacobs, Kris, Ornthanalai, Chayawat, & Wang, Yintian. 2008. Option valuation with long-run and short-run volatility components. Journal of Financial Economics, 90(3), 272-297.

Cordeiro, Gauss M.; Cribari-Neto, Francisco. 2014. An introduction to Bartlett correction and bias reduction. Springer Briefs in Statistics.

Creal, Drew, Koopman, Siem Jan, & Lucas, Andr013. Generalized autoregressive score models with applications. Journal of Applied Econometrics, 28(5), 777-795.

Creal, Drew; Koopman, Siem Jan; Lucas, Andre. 2011. A dynamic multivariate heavy-tailed model for time-varying volatilities and correlations. Journal of Business & Economic Statistics, 29(4), 552-563.

Danıelsson, Jon. 2011. Financial risk forecasting: the theory and practice of forecasting market risk with implementation in R and Matlab. A John Wiley & Sons.

Douc, Randal, Moulines, Eric; Ryden, Tobias. 2004. Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime. The Annals of Statistics, 32(5), 2254-2304.

Engle, Robert F. 1982. Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation. Econometrica, 50(4), 987-1007.

Engle, Robert F.; Hendry, David F.; Trumble, David. 1985. Small-sample properties of ARCH estimators and tests. The Canadian Journal of Economics, 18(1), 66-93.

Engle, Robert F.; Lee, Gary G. J. 1999. Cointegration, causality, and forecasting: a Festschrift in Honour of Clive W. J. Granger. Oxford: Oxford University Press. Chap. A long-run and a short-run component model of stock return volatility.

Engle, Robert F.; Patton, Andrew J. 2001. What good is a volatility model? Quantitative Finance, 1(2), 237-245.

Fantazzini, Dean. 2009. The effects of misspecified marginals and copulas on computing the value at risk: a Monte Carlo study. Computational Statistics & Data Analysis, 53(6), 2168-2188.

Fernandez, Carmen; Steel, Mark F. J. 1998. On bayesian modelling of fat tails and skewness. Journal of the American Statistical Association, 93(441), 359-371.

Ferrari, Silvia L. P.; Silva, Michel Ferreira Da; Cribari-Neto, Francisco. 2005. Adjusted profile likelihood for two-parameter exponential family models. Communications in Statistics - Theory and Methods, 34(2), 257-276.

Fonseca, Thaıs C. O.; Ferreira, Marco A. R.; Migon, Helio S. 2008. Objective bayesian analysis forth e student-t regression model. Biometrika, 95(2), 325-333.

Francq, Christian; Zakoian, Jean Michel. 2010. GARCH models: Structure, Statistical Inference and Financial Applications. A John Wiley and Sons.

Guo, Hui; Neely, Christopher J. 2008. Investigating the intertemporal risk return relation in international stock markets with the component GARCH model. Economics Letters, 99(2), 371-374.

Harvey, Andrew C. 2013. Dynamic models for volatility and heavy tails. New York: Cambridge University Press.

Harvey, Andrew; Chakravarty, Tirthankar. 2008. Beta-t-EGARCH. Working Paper.

Harvey, Andrew; Sucarrat, Genaro. 2014. EGARCH models with fat tails, skewness and leverage. Computational Statistics & Data Analysis, v. 76, p. 320-338.

Hippel, Paul T. von. 2013. The bias and efficiency of incomplete-data estimators in small univariate normal samples. Sociological Methods & Research, 42(4), 531-558.

Hwang, Soosung; Pereira, Pedro L. Valls. 2006. Small sample properties of GARCH estimates and persistence. The European Journal of Finance, 12(6/7), 473-494.

Iglesias, Emma M.; Phillips, Garry D. A. 2012. Estimation, testing, and finite sample properties of quasi-maximum likelihood estimators in GARCH-M models. Econometric Reviews, 31(5), 532-557.

Jacquier, Eric, Polson, Nicholas G.; Rossi, Peter E. 2004. Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. Journal of Econometrics, 122(1), 185 - 212.

Jarque, Carlos M.; Bera, Anil K. 1987. A test for normality of observations and regression residuals. International Statistical Review, 55(2), 163-172.

Jorion, Philippe. 2007. Value at risk: the new benchmark for managing financial risk. 3 ed. Hardcover.

Keblowski, Piotr. 2005. Small sample power of bartlett corrected likelihood ratio test of cointegration rank. Working Paper.

Kenward, Michael G.; Roger, James H. 1997. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53(3), 983-997.

Kwiatkowski, Denis, Phillips, Peter C. B.; Schmidt, Peter, & Shin, Yongcheol. 1992. Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54(1/3), 159-178.

Lehmann, Erich Leo. 1983. Theory of point estimation. New York: Wiley.

Lindsey, James K. 1996. Parametric statistical inference. Oxford Science Publications.

Liu, Ming. 2000. Modeling long memory in stock market volatility. Journal of Econometrics, 99(1), 139-171.

Ljung, Greta M.; Box, George E. P. 1978. On a measure of a lack of fit in time series models. Biometrika, 65(2), 297-303.

Luger, Richard. 2012. Finite-sample bootstrap inference in GARCH models with heavy-tailed innovations. Computational Statistics & Data Analysis, 56(11), 3198-3211.

Lumsdaine, Robin L. 1995. Finite-Sample Properties of the Maximum Likelihood Estimator in GARCH(1,1) and IGARCH(1,1) Models: A Monte Carlo Investigation. Journal of Business & Economic Statistics, 13(1).

Mandelbrot, Benoit. 1963. The variation of certain speculative prices. The Journal of Business, 36(4), 394-419.

Mcneil, Alexander J.; Rü, diger Frey; Embrechts, Paul. 2005. Quantitative risk management. Princeton University Press.

Mendes, Beatriz Vaz De. Melo. 2000. Assessing the bias of maximum likelihood estimates of contaminated GARCH models. Journal of Statistical Computation and Simulation, 67(4), 359-376.

Noh, Jaesun. 1997. Small sample properties of GARCH(1,1) estimator under non-normality. Economics Letters, 55(2), 161-164.

Pawitan, Yudi. 2001. In all Likelihood: statistical modelling and inference using likelihood. Oxford Science Publications.

R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Said, Said E.; Dickey, David A. 1984. Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika, 71(3), 599-607.

Shimizu, Kenichi. 2010. Bootstrapping stationary ARMA-GARCH models. Springer.

Stein, Markus Chagas; da Silva, Michel Ferreira; Duczrnal, Luiz Henrique. 2014. Alternatives to the usual likelihood ratio test in mixed linear models. Computational Statistics & Data Analysis, v. 69, p. 184-197.

Sucarrat, Genaro. 2013. Betategarch: Simulation, Estimation and Forecasting of Beta-Skew-t-EGARCH Models. The R Journal, 5(2), 137-147.

Tsay, Ruey S. 2010. Analysis of financial time series. 3 ed. A John Wiley & Sons.

Wang, Fangfang; Ghysels, Eric. 2015. Econometric analysis for volatility component models. Econometric Theory, 31(02), 362-393.

Xie, Yingfu. 2009. Consistency of maximum likelihood estimators for the regime-switching GARCH model. Statistics: A Journal of Theoretical and Applied Statistics, 43(2), 153-165.