Forecasting value-at-risk and expected shortfall for emerging markets using FIGARCH models Other Languages

ID:
38266
Abstract:
This paper compares the performance of long-memory models (FIGARCH) with short-memory models (GARCH) in forecasting volatility for calculating valueat-risk (VaR) and expected shortfall (ES) for multiple periods ahead for six emerging markets stock indices. We used daily data from 1999 to 2014 and an adaptation of the Monte Carlo simulation to estimate VaR and ES forecasts for multiple steps ahead (1, 10 and 20 days ), using FIGARCH and GARCH models for four errors distributions. The results suggest that, in general, the FIGARCH models improve the accuracy of forecasts for longer horizons; that the error distribution used may influence the decision about the best model; and that only for FIGARCH models the occurrence of underestimation of the true VaR is less frequent with increasing time horizon. However, the results suggest that rollingsampled estimated FIGARCH parameters change less smoothly over time compared to the GARCH models.
ABNT Citation:
MORAES, A. S. M.; PINTO, A. C. F.; KLOTZLE, M. C. Previsão de value-at-risk e expected shortfall para mercados emergentes usando modelos FIGARCH . Revista Brasileira de Finanças, v. 13, n. 3, p. 394-394, 2015.
APA Citation:
Moraes, A. S. M., Pinto, A. C. F., & Klotzle, M. C. (2015). Previsão de value-at-risk e expected shortfall para mercados emergentes usando modelos FIGARCH . Revista Brasileira de Finanças, 13(3), 394-394.
Permalink:
https://www.spell.org.br/documentos/ver/38266/forecasting-value-at-risk-and-expected-shortfall-for-emerging-markets-using-figarch-models/i/en
Document type:
Artigo
Language:
Português
References:
Acerbi, C.; Tasche, D. 2002. On the coherence of expected shortfall. Journal of Banking & Finance, 26(7), 1487-1503.

Aloui, C.; Hamida, H. B. 2014. Modelling and forecasting value at risk and expected shortfall for GCC stock markets: Do long memory, structural breaks, asymmetry, and fat-tails matter? The North American journal of economics and finance, v. 29, p. 349-380.

Aloui, C.; Mabrouk, S. 2010. Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models. Energy Policy, 38(5), 2326-2339.

Angelidis, T.; Benos, A.; Degiannakis, S. 2004. The use of GARCH models in VaR estimation. Statistical Methodology, 1(1), 105-128.

Angelidis, T.; Degiannakis, S. 2007. Backtesting VaR models: A twostage procedure. Journal of Risk Model Validation, 1(2), 27-48.

Artzner, P.; Delbaen, F.; Eber, J.; Heath, D. 1997. Thinking coherently. Risk, v. 10, p. 68-71.

Baillie, R. T.; Bollerslev, T.; Mikkelsen, H. O. 1996. Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1), 3-30.

Basel Committee on Banking Supervision. 1996. Amendment to the capital accord to incorporate market risks. Basel.

Bollerslev, T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307-327. 1996.

Bollerslev, T.; Ole Mikkelsen, H. 1996. Modeling and pricing long memory in stock market volatility. Journal of Econometrics, 73(1), 151-184.

Bollerslev, T.; Wooldridge, J. M. 1992. Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances. Econometric reviews, 11(2), 143-172.

Caporin, M. 2008. Evaluating value-at-risk measures in the presence of long memory conditional volatility. Journal of Risk, v. 10: 79+.

Christoffersen, P. 2012. Elements of financial risk management. 2 ed. United States: Elsevier.

Christoffersen, P. F. 1998. Evaluating interval forecasts. International Economic Review, 39(4), 841-862.

Chung, C. F. 1999. Estimating the fractionally integrated GARCH model. unpublished paper, National Taiwan University.

Clark, T. E.; McCracken, M. W. 2001. Tests of equal forecast accuracy and encompassing for nested models. Journal of econometrics, 105(1), 85-110.

Crouhy, M.; Galai, D.; Mark, R. 2000. Risk Management. New York: McGraw-Hill.

Degiannakis, S.; Floros, C.; Dent, P. 2013. Forecasting value-at-risk and expected shortfall using fractionally integrated models of conditional volatility: International evidence. International Review of Financial Analysis, 27(0), 21-33.

Degiannakis, S.; Livada, A.; Panas, E. 2008. Rolling-sampled parameters of ARCH and Levy-stable models. Applied Economics, 40(23), 3051-3067.

Diebold, F. X.; Mariano, R. S. 1995. Comparing Predictive Accuracy. Journal of Business & Economic Statistics, 13(3), 253-263.

Engle, R. 2004. Risk and volatility: Econometric models and financial practice. American Economic Review, 94(3), 405-420.

Engle, R. F.; Ito, T.; Lin, W.-L. 1990. Meteor Showers or Heat Waves? Heteroskedastic Intra-Daily Volatility in the Foreign Exchange Market. Econometrica, 58(3), 525-542.

Engle, R. F.; Ng, V. K. 1993. Measuring and Testing the Impact of News on Volatility. The Journal of Finance, 48(5), 1749-1778.

Geweke, J.; Porter-Hudak, S. 1983. The estimation and application of long-memory times series models. Journal of Time Series Analysis, v. 4, p. 221-238.

Giacomini, R.; White, H. 2006. Tests of Conditional Predictive Ability. Econometrica, 74(6), 1545-1578.

Giot, P.; Laurent, S. 2003. Value‐at‐risk for long and short trading positions. Journal of Applied Econometrics, 18(6), 641-663.

Giot, P.; Laurent, S. 2004. Modelling daily value-at-risk using realized volatility and ARCH type models. Journal of Empirical Finance, 11(3), 379-398.

Hansen, P. R.; Lunde, A. 2005. A forecast comparison of volatility models: does anything beat a GARCH (1, 1)? Journal of applied econometrics, 20(7), 873-889.

Härdle, W.; Mungo, J. 2008. Value-at-Risk and Expected Shortfall when there is long range dependence. Institute of International Finance. 2015. Anual Report.

Harris, R. I.; Sollis, R. 2003. Applied time series modelling and forecasting. J. Wiley.

Kaman, S.; Turgutlu, E.; Ayhan, A. D. 2009. Long memory in stock returns. Applied economics letters, 16(16/18), 1763-1768.

Kuester, K.; Mittnik, S.; Paolella, M. S. 2006. Value-at-risk prediction: A comparison of alternative strategies. Journal of Financial Econometrics, 4(1), 53-89.

Kupiec, P. 1995. Techniques for verifying the accuracy of risk measurement models. Journal of Derivatives, 3(2), 73-84.

Laurent, S. 2009. G@RCH 6. An Ox package for estimating and forecasting GARCH models. London: Timberlake Consultants Press.

Lo, A. W. 1991. Long-Term Memory in Stock Market Prices. Econometrica, 59(5), 1279-1313.

Mabrouk, S.; Saadi, S. 2012. Parametric Value-at-Risk analysis. The Quarterly review of economics and finance, 52(3), 305-321.

McMillan, D. G.; Kambouroudis, D. 2009. Are RiskMetrics forecasts good enough? Evidence from 31 stock markets. International Review of Financial Analysis, 18(3), 117-124.

Nagayasu, J. 2008. Japanese stock movements from 1991 to 2005: evidence from high and low-frequency data. Applied Financial Economics, 18(4), 295-307.

Nyblom, J. 1989. Testing for the Constancy of Parameters Over Time. Journal of the American Statistical Association, 84(405), 223-230.

Rossignolo, A. F.; Fethi, M. D.; Shaban, M. 2012. Value-at-Risk models and Basel capital charges: Evidence from Emerging and Frontier stock markets. Journal of Financial Stability, 8(4), 303-319.

Shao, X. D.; Lian, Y. J.; Yin, L. Q. 2009. Forecasting Value-at-Risk using high frequency data: The realized range model. Global Finance Journal, 20(2), 128-136.

Tang, T. L.; Shieh, S. J. 2006. Long memory in stock index futures markets: A value-at-risk approach. Physica A: Statistical Mechanics and its Applications, 366(0), 437-448.

Taylor, S. J. 1987. Forecasting the volatility of currency exchange rates. International Journal of Forecasting, 3(1), 159-170.

Vilasuso, J. 2002. Forecasting exchange rate volatility. Economics Letters, 76(1), 59-64.

Xekalaki, E.; & Degiannakis, S. 2010. ARCH models for financial applications. United Kingdom: John Wiley & Sons.