Abstract Portuguese:
Este artigo compara os desempenhos dos modelos de memória longa (FIGARCH) e curta (GARCH) na previsão de volatilidade para cálculo de valueat-risk (VaR) e expected shortfall (ES) para múltiplos períodos à frente para seis índices de ações de mercados emergentes Utilizou-se, para dados diários de 1999 a 2014, uma adaptação da simulação de Monte Carlo para estimar previsões de VaR e ES para 1, 10 e 20 dias à frente, usando modelos FIGARCH e GARCH para quatro distribuições de erros. Os resultados sugerem que, em geral, os modelos FIGARCH melhoram a precisão das previsões para horizontes mais longos; que a distribuição dos erros pode influenciar a decisão de escolha do melhor modelo; e que apenas para os modelos FIGARCH houve redução do número de subestimações do VaR verdadeiro com o aumento do horizonte de previsão. Entretanto, os resultados apontam para uma maior variação das estimativas dos parâmetros para os modelos FIGARCH.
ABNT Citation:
MORAES, A. S. M.; PINTO, A. C. F.; KLOTZLE, M. C. Previsão de value-at-risk e expected shortfall para mercados emergentes usando modelos FIGARCH . Revista Brasileira de Finanças, v. 13, n. 3, p. 394-394, 2015.
APA Citation:
Moraes, A. S. M., Pinto, A. C. F., & Klotzle, M. C. (2015). Previsão de value-at-risk e expected shortfall para mercados emergentes usando modelos FIGARCH . Revista Brasileira de Finanças, 13(3), 394-394.
References:
Acerbi, C.; Tasche, D. 2002. On the coherence of expected shortfall. Journal of Banking & Finance, 26(7), 1487-1503.
Aloui, C.; Hamida, H. B. 2014. Modelling and forecasting value at risk and expected shortfall for GCC stock markets: Do long memory, structural breaks, asymmetry, and fat-tails matter? The North American journal of economics and finance, v. 29, p. 349-380.
Aloui, C.; Mabrouk, S. 2010. Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models. Energy Policy, 38(5), 2326-2339.
Angelidis, T.; Benos, A.; Degiannakis, S. 2004. The use of GARCH models in VaR estimation. Statistical Methodology, 1(1), 105-128.
Angelidis, T.; Degiannakis, S. 2007. Backtesting VaR models: A twostage procedure. Journal of Risk Model Validation, 1(2), 27-48.
Artzner, P.; Delbaen, F.; Eber, J.; Heath, D. 1997. Thinking coherently. Risk, v. 10, p. 68-71.
Baillie, R. T.; Bollerslev, T.; Mikkelsen, H. O. 1996. Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1), 3-30.
Basel Committee on Banking Supervision. 1996. Amendment to the capital accord to incorporate market risks. Basel.
Bollerslev, T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307-327. 1996.
Bollerslev, T.; Ole Mikkelsen, H. 1996. Modeling and pricing long memory in stock market volatility. Journal of Econometrics, 73(1), 151-184.
Bollerslev, T.; Wooldridge, J. M. 1992. Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances. Econometric reviews, 11(2), 143-172.
Caporin, M. 2008. Evaluating value-at-risk measures in the presence of long memory conditional volatility. Journal of Risk, v. 10: 79+.
Christoffersen, P. 2012. Elements of financial risk management. 2 ed. United States: Elsevier.
Christoffersen, P. F. 1998. Evaluating interval forecasts. International Economic Review, 39(4), 841-862.
Chung, C. F. 1999. Estimating the fractionally integrated GARCH model. unpublished paper, National Taiwan University.
Clark, T. E.; McCracken, M. W. 2001. Tests of equal forecast accuracy and encompassing for nested models. Journal of econometrics, 105(1), 85-110.
Crouhy, M.; Galai, D.; Mark, R. 2000. Risk Management. New York: McGraw-Hill.
Degiannakis, S.; Floros, C.; Dent, P. 2013. Forecasting value-at-risk and expected shortfall using fractionally integrated models of conditional volatility: International evidence. International Review of Financial Analysis, 27(0), 21-33.
Degiannakis, S.; Livada, A.; Panas, E. 2008. Rolling-sampled parameters of ARCH and Levy-stable models. Applied Economics, 40(23), 3051-3067.
Diebold, F. X.; Mariano, R. S. 1995. Comparing Predictive Accuracy. Journal of Business & Economic Statistics, 13(3), 253-263.
Engle, R. 2004. Risk and volatility: Econometric models and financial practice. American Economic Review, 94(3), 405-420.
Engle, R. F.; Ito, T.; Lin, W.-L. 1990. Meteor Showers or Heat Waves? Heteroskedastic Intra-Daily Volatility in the Foreign Exchange Market. Econometrica, 58(3), 525-542.
Engle, R. F.; Ng, V. K. 1993. Measuring and Testing the Impact of News on Volatility. The Journal of Finance, 48(5), 1749-1778.
Geweke, J.; Porter-Hudak, S. 1983. The estimation and application of long-memory times series models. Journal of Time Series Analysis, v. 4, p. 221-238.
Giacomini, R.; White, H. 2006. Tests of Conditional Predictive Ability. Econometrica, 74(6), 1545-1578.
Giot, P.; Laurent, S. 2003. Value‐at‐risk for long and short trading positions. Journal of Applied Econometrics, 18(6), 641-663.
Giot, P.; Laurent, S. 2004. Modelling daily value-at-risk using realized volatility and ARCH type models. Journal of Empirical Finance, 11(3), 379-398.
Hansen, P. R.; Lunde, A. 2005. A forecast comparison of volatility models: does anything beat a GARCH (1, 1)? Journal of applied econometrics, 20(7), 873-889.
Härdle, W.; Mungo, J. 2008. Value-at-Risk and Expected Shortfall when there is long range dependence. Institute of International Finance. 2015. Anual Report.
Harris, R. I.; Sollis, R. 2003. Applied time series modelling and forecasting. J. Wiley.
Kaman, S.; Turgutlu, E.; Ayhan, A. D. 2009. Long memory in stock returns. Applied economics letters, 16(16/18), 1763-1768.
Kuester, K.; Mittnik, S.; Paolella, M. S. 2006. Value-at-risk prediction: A comparison of alternative strategies. Journal of Financial Econometrics, 4(1), 53-89.
Kupiec, P. 1995. Techniques for verifying the accuracy of risk measurement models. Journal of Derivatives, 3(2), 73-84.
Laurent, S. 2009. G@RCH 6. An Ox package for estimating and forecasting GARCH models. London: Timberlake Consultants Press.
Lo, A. W. 1991. Long-Term Memory in Stock Market Prices. Econometrica, 59(5), 1279-1313.
Mabrouk, S.; Saadi, S. 2012. Parametric Value-at-Risk analysis. The Quarterly review of economics and finance, 52(3), 305-321.
McMillan, D. G.; Kambouroudis, D. 2009. Are RiskMetrics forecasts good enough? Evidence from 31 stock markets. International Review of Financial Analysis, 18(3), 117-124.
Nagayasu, J. 2008. Japanese stock movements from 1991 to 2005: evidence from high and low-frequency data. Applied Financial Economics, 18(4), 295-307.
Nyblom, J. 1989. Testing for the Constancy of Parameters Over Time. Journal of the American Statistical Association, 84(405), 223-230.
Rossignolo, A. F.; Fethi, M. D.; Shaban, M. 2012. Value-at-Risk models and Basel capital charges: Evidence from Emerging and Frontier stock markets. Journal of Financial Stability, 8(4), 303-319.
Shao, X. D.; Lian, Y. J.; Yin, L. Q. 2009. Forecasting Value-at-Risk using high frequency data: The realized range model. Global Finance Journal, 20(2), 128-136.
Tang, T. L.; Shieh, S. J. 2006. Long memory in stock index futures markets: A value-at-risk approach. Physica A: Statistical Mechanics and its Applications, 366(0), 437-448.
Taylor, S. J. 1987. Forecasting the volatility of currency exchange rates. International Journal of Forecasting, 3(1), 159-170.
Vilasuso, J. 2002. Forecasting exchange rate volatility. Economics Letters, 76(1), 59-64.
Xekalaki, E.; & Degiannakis, S. 2010. ARCH models for financial applications. United Kingdom: John Wiley & Sons.