Previsibilidade em Preços Máximos e Mínimos: O Caso do Bitcoin Outros Idiomas

ID:
55574
Resumo:
Bitcoin has attracted the attention of investors lately due to its significant market capitalization and high volatility. This work considers the modeling and forecasting of daily high and low Bitcoin prices using a fractionally cointegrated vector autoregressive (FCVAR) model. As a flexible framework, FCVAR is able to account for two fundamental patterns of high and low financial prices: their cointegrating relationship and the long memory of their difference (i.e., the range), which is a measure of realized volatility. The analysis comprises the period from January 2012 to February 2018. Empirical findings indicate a significant cointegration relationship between daily high and low Bitcoin prices, which are integrated on an order close to the unity, and the evidence of long memory for the range. Results also indicate that high and low Bitcoin prices are predictable, and the fractionally cointegrated approach appears as a potential forecasting tool for cryptocurrencies market practitioners.
Citação ABNT:
MACIEL, L.; BALLINI, R. On the Predictability of High and Low Prices: The Case of Bitcoin. Revista Brasileira de Finanças, v. 17, n. 3, p. 66-84, 2019.
Citação APA:
Maciel, L., & Ballini, R. (2019). On the Predictability of High and Low Prices: The Case of Bitcoin. Revista Brasileira de Finanças, 17(3), 66-84.
DOI:
http://dx.doi.org/10.12660/rbfin.v17n1.2019.77578
Link Permanente:
https://www.spell.org.br/documentos/ver/55574/previsibilidade-em-precos-maximos-e-minimos--o-caso-do-bitcoin/i/pt-br
Tipo de documento:
Artigo
Idioma:
Inglês
Referências:
Alizadeh, S., Brandt, M. W., Diebold, F. X. (2002). Range-based estimation of stochastic volatility. Journal of Finance 57(3), 1047-1091.

Alvarez-Ramirez, J., Rodriguez, E., Ibarra-Valdez, C. (2018). Long-range correlations and asymmetry in the Bitcoin market. Physica A, v. 492, n. 948-955.

Andersen, T. G., Bollerslev, T. (1997). Heterogeneous information arrivals and return volatility dynamics: Uncovering the long-run in high frequency returns. Journal of Finance, 52(3), 975-1005.

A-Yahyahee, K. H., Mensi, W., Yoon, S. (2018). Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets. Finance Research Letters, v. 27, p. 228-234.

Baek, C., Elbeck, M. (2015). Bitcoins as an investment or speculative vehicle? A first look. Applied Economic Letters, 22(1), 30-34.

Balcilar, M., Bouri, E., Gupta, R., Roubaud, D. (2017). Can volume predict Bitcoin returns and volatility?A quantiles-based approach. Economic Modelling, v. 64, p. 74-81.

Bariviera, A. F., Basgall, M. J., Hasperué, W., Naiouf, M. (2017). Some stylized facts of the Bitcoin market. Physica A, v. 484, p. 82-90.

Bartos, J. (2015). Does Bitcoin follow the hypothesis of efficient market? International Journal of Economic Science, 4(2), 10-23.

Baruník, J., Dvoˇráková, S. (2015). An empirical model of fractionally cointegrated daily high and low stock market prices. Economic Modelling, v. 45, p. 193-206.

Brandt, M. W., Diebold, F. X. (2006). A no-arbitrage approach to range-based estimation of return covariances and correlations. Journal of Business 79(1), 61-74.

Breidr, F. J., Crato, N., Lima, P. (1998). The detection and estimation of long memory in stochastic volatility. Journal of Econometrics, 83(1-2), 325-348.

Caporin, M., Ranaldo, A., Magistris, P. C. (2013). On the predictability of stock prices: A case for high and low prices. Journal of Banking & Finance, v. 37, p. 5132-5146.

Cheah, E. T., Fry, J. M. (2015). Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin. Economics Letters, v. 30, p. 32-36.

Cheah, E. T., Mishra, T., Parhi, M., Zhang, Z. (2018). Long memory interdependency and inefficiency in Bitcoin markets. Economics Letters, v. 167, p. 18-25.

Cheung, Y. L., Cheung, Y. W., He, A. W., Wan, A. T. (2009). A high-low model of daily stock price ranges. Journal of Forecasting, v. 28, p. 103-119.

Cheung, Y. L., Cheung, Y. W., Wan, A. T. (2010). A trading strategy based on callable bull/bear contracts. Pacific-Basin Finance Journal, v. 18, p. 186-198.

Cheung, Y. W. (2007). An empirical model of daily highs and lows. International Journal of Finance & Economics, 12(1), 1-20.

Cheung, Y. W., Chinn, M. D. (2001). Currency traders and exchange rate dynamics: A survey of the US market. Journal of International Money and Finance, 20(4), 439-471.

Dickey, D. A., Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(266), 427-431.

Diebold, F. X., Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business and Economics Statistics, 13(3), 253-265.

Dolatabadi, S., Nielsen, M. O., Xu, K. (2016). A fractionally cointegrated VAR model with deterministic trends and application to commodity futures markets. Journal of Empirical Finance, v. 38, n. 623-639.

Dyhrberg, A. H. (2016). Bitcoin, gold and the dollar - A GARCH volatility analysis. Finance Research Letters, n. 16, p. 85-92.

Dyhrberg, A. H. (2016). Hedging capabilities of Bitcoin. Is it the virtual gold? Finance Research Letters, v. 16, p. 139-144.

Fiess, N. M., MacDonald, R. (2002). Towards the fundamentals of technical analysis: Analysing the information content of high, low and close prices. Economic Modelling, 19(3), 353-374.

Garvey, J. F., Gallagher, L. A. (2012). The realised-implied volatility relationship: Recent empirical evidence from FTSE-100 stocks. Journal of Forecasting, 31(7), 639-660.

Hansen, P. R., Lunde, A., Nason, J. M. (2011). The model confidence set. Econometrica, 79(2), 453-497.

He, A. W., Wan, A. T. (2009). Predicting daily highs and lows of exchange rates: A cointegration analysis. Journal of Applied Statistics, 36(11), 1191-1204.

He, L. T., Hu, C. (2009). Impacts of interval computing on stock market variability forecasting. Computational Economics, 33(3), 263-276.

Johansen, S. (1995). Likelihood-based inference in cointegrated vector autoregressive models. Oxford University Press, New York.

Johansen, S. (2008). A representation theory for a class of vector autoregressive models for fractional processes. Econometric Theory, 24(3), 651-676.

Johansen, S., Nielsen, M. O. (2010). Likelihood inference for a nonstationary fractional autoregressive model. Journal of Econometrics, 158(1), 51-66.

Johansen, S., Nielsen, M. O. (2012). Likelihood inference for a fractionally cointegrated vector autoregressive model. Econometrica, 80(6), 2667-2732.

Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters, v. 158, p. 3-6.

Kurihara, Y., Fukushima, A. (2017). The market efficiency of Bitcoin: A weekly anomaly perspective. Journal of Applied Finance and Banking, n. 7, p. 57-64.

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics 54(1), 159-178.

Lahmiri, S., Bekiros, S., Salvi, A. (2018). Long-range memory, distributional variation and randomness of Bitcoin volatility. Chaos, Solitons and Fractals, v. 107, p. 43-48.

Maciel, L. (2018). Technical analysis based on high and low stock prices forecasts: Evidence for Brazil using a fractionally cointegrated VAR model. Empirical Economics. https://doi.org/10.1007/s00181-018-1603-8

MacKinnon, J. G., Nielsen, M. O. (2014). Numerical distribution functions of fractional unit root and cointegration tests. Journal of Applied Econometrics, 29(1), 161-171.

Medovikov, I. (2016). When does the stock market listen to economic news? New evidence from copulas and news wires. Journal of Banking & Finance, v. 65, p. 27-40.

Nielsen, M., Morin, L. (2016). A Matlab program and user’s guide for the fractionally cointegrated VAR model. Technical report, QED Working Paper 1330. Queen’s University.

Nielsen, M. O., Shimotsu, K. (2007). Determining the cointegrating rank in nonstationary fractional systems by the exact local Whittle approach. Journal of Econometrics, 141(2), 574-596.

Polasik, M., Piotrowska, A. I., Wisniewski, T. P., Kotokowski, R., Lightfoot, G. (2015). Price fluctuations and the use of Bitcoin: An empirical inquiry. International Journal of Electronic Commerce, 20(1), 9-49.

Robinson, P. M., Yajima, Y. (2002). Determination of cointegrating rank in fractional systems. Journal of Econometrics, 106(2), 217-241.

Shu, J. H., Zhang, J. E. (2006). Testing range estimators of historical volatility. Journal of Future Markets 26(3), 297-313.

Urquhart, A. (2016). The inefficiency of Bitcoin. Economics Letters, v. 148, p. 80-82.

Urquhart, A. (2017). Price clustering in Bitcoin. Economics Letters, v. 159, p. 145-148.

Xiong, T., Li, C., Bao, Y. (2017). Interval-valued time series forecasting using a novel hybrid Holt and MSVR model. Economic Modelling, v. 60, 11-23.

Yalama, A., Celik, S. (2013). Real or spurious long memory characteristics of volatility: Empirical evidence from an emerging market. Economic Modelling, n. 30, 67-72. , Yermack, D. (2017). Corporate governance and blockchains. Review of Finance, n. 21, 7-31.

Yermack, D. (2017). Corporate governance and blockchains. Review of Finance, n. 21, 7-31.