What drives the release of material facts for Brazilian stocks? Outros Idiomas

ID:
68400
Resumo:
In this study we look at the determinants of material facts (Fatos Relevantes) in the Brazilian Market. Following local legislation, material facts should be released to the public right after its occurrence, and preferably, after trading time. We investigate the randomness of the release of material facts—and release strategies by executives—and test whether there is a particular time period where more or fewer material facts are published. We also investigate whether the content of the material fact—positive or negative sentiment—explains different strategies regarding the release of news to the market. Lastly, using Vector Auto Regressions, we test for a feedback effect between material facts and the financial data, that is, if material facts publishing drives the returns, volume and volatility and vice versa. Finally, our results show that volume, volatility and returns (to a lesser extent) are determinants for material facts publishing and material facts.
Citação ABNT:
REICHERT, M. H.; PERLIN, M. S. What drives the release of material facts for Brazilian stocks?. Revista Brasileira de Finanças, v. 20, n. 2, p. 116-141, 2022.
Citação APA:
Reichert, M. H., & Perlin, M. S. (2022). What drives the release of material facts for Brazilian stocks?. Revista Brasileira de Finanças, 20(2), 116-141.
DOI:
https://doi.org/10.12660/rbfin.v20n2.2022.85378
Link Permanente:
https://www.spell.org.br/documentos/ver/68400/what-drives-the-release-of-material-facts-for-brazilian-stocks-/i/pt-br
Tipo de documento:
Artigo
Idioma:
Inglês
Referências:
Bagnoli, M., Kross, W. and Watts, S. G. (2002). The information in management’s expected earnings report date: A day late, a penny short, Journal of Accounting Research 40(5): 1275–1296.

Barclay, M. J. and Litzenberger, R. H. (1988). Announcement effects of new equity issues and the use of intraday price data, Journal of Financial Economics 21(1): 71–99.

Bhardwaj, A., Narayan, Y., Dutta, M. et al. (2015). Sentiment analysis for indian stock market prediction using sensex and nifty, Procedia Computer Science 70: 85–91.

Bollen, J., Mao, H. and Zeng, X. (2011). Twitter mood predicts the stock market, Journal of computational science 2(1): 1–8.

Bordino, I., Battiston, S., Caldarelli, G., Cristelli, M., Ukkonen, A. and Weber, I. (2012). Web search queries can predict stock market volumes, PloS one 7(7): e40014.

Bozza, C. C., Klotzle, M. C., Pinto, A. C. F. and da Gama Silva, P. V. J. (2019). Efeito feedback trading em criptomoedas com dados de alta frequência, Revista De Gestao, Financas E Contabilidade 9(1): 80–98.

Busse, J. A. and Green, T. C. (2002). Market efficiency in real time, Journal of Financial Economics 65(3): 415–437. Chambers, A. E. and Penman, S. H. (1984). Timeliness of reporting and the stock price reaction to earnings announcements, Journal of accounting research pp. 21–47.

Cutler, D. M., Poterba, J. M. and Summers, L. H. (1990). Speculative dynamics and the role of feedback traders.

Damascena, D. S., da Silva, S. E. P., dos Santos, J. O. and de Godoi, A. F. (2017). Análise do impacto de fatos relevantes no retorno das ações de empresa de educação superior. Revista Brasileira de Administração Científica 8(3): 1–12.

Da, Z., Engelberg, J. and Gao, P. (2011). In search of attention, The Journal of Finance 66(5): 1461–1499.

de Carvalho, A., Suen, A. S., Gallo, F. et al. (2016). Market efficiency in brazil: Some evidence from high-frequency data, Bcb working papers 431, Banco Central do Brasil.

Drienko, J. and Sault, S. J. (2013). The intraday impact of company responses to exchange queries, Journal of Banking & Finance 37(12): 4810–4819.

Fama, E. F. (1965). The behavior of stock-market prices, Journal of Business 38(1): 34–105.

Fama, E. F., Fisher, L., Jensen, M. C. and Roll, R. (1969). The adjustment of stock prices to new information, International Economic Review 10(1): 1– 21.

Feinerer, I., Hornik, K. and Meyer, D. (2008). Text mining infrastructure in r, Journal of Statistical Software 25(5): 1–54. URL: https://www.jstatsoft.org/v25/i05/

Feldman, R. (2013). Techniques and applications for sentiment analysis, Communications of the ACM 56(4): 82–89. Garcia, D. (2013). Sentiment during recessions, The Journal of Finance 68(3): 1267–1300.

Gilbert, E. and Karahalios, K. (2010). Widespread worry and the stock market, Fourth International AAAI Conference on Weblogs and Social Media.

Givoly, D. and Palmon, D. (1982). Timeliness of annual earnings announcements: Some empirical evidence, Accounting review pp. 486–508.

Graham, J. R., Harvey, C. R. and Rajgopal, S. (2005). The economic implications of corporate financial reporting, Journal of accounting and economics 40(1-3): 3–73.

Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods, Econometrica: journal of the Econometric Society pp. 424–438.

Grossmann, A., Love, I. and Orlov, A. G. (2014). The dynamics of exchange rate volatility: A panel var approach, Journal of International Financial Markets, Institutions and Money 33: 1–27.

Härdle, W., Tsybakov, A. and Yang, L. (1998). Nonparametric vector autoregression, Journal of Statistical Planning and Inference 68(2): 221–245.

Lehavy, R., Li, F. and Merkley, K. (2011). The effect of annual report readability on analyst following and the properties of their earnings forecasts, The Accounting Review 86(3): 1087–1115.

Li, F. (2008). Annual report readability, current earnings, and earnings persistence, Journal of Accounting and economics 45(2-3): 221–247.

Loughran, T. and McDonald, B. (2016). Textual analysis in accounting and finance: A survey, Journal of Accounting Research 54(4): 1187–1230.

Malkiel, B. G. and Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work, The journal of Finance 25(2): 383–417.

Marques, V. A., Lara, C. O., Ayala, L. C. and Lamounier, W. M. (2011). O impacto dos fatos relevantes no mercado de capitais: um estudo dos fatos publicados pelas empresas participantes do novo mercado do segmento bovespa, Sociedade, Contabilidade e Gestão 5(3).

Medhat, W., Hassan, A. and Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey, Ain Shams engineering journal 5(4): 1093–1113.

Patell, J. M. and Wolfson, M. A. (1982). Good news, bad news, and the intraday timing of corporate disclosures, Accounting review pp. 509–527.

Patell, J. M. and Wolfson, M. A. (1984). The intraday speed of adjustment of stock prices to earnings and dividend announcements, Journal of financial economics 13(2): 223–252.

Perlin, M. and Ramos, H. (2016). Gethfdata: Ar package for downloading and aggregating high frequency trading data from bovespa, Available at SSRN 2824058 .

Perlin, M. S., Caldeira, J. F., Santos, A. A. and Pontuschka, M. (2017). Can we predict the financial markets based on google’s search queries?, Journal of Forecasting 36(4), 454-467.

Silva, C. A. T. and da Silva Felipe, E. (2010). Avaliação da influência de textos narrativos de fatos relevantes no preço das ações de empresas brasileiras, Revista Contabilidade e Controladoria 2(2).

Silva, C. A. T. and Fernandes, J. L. T. (2009). Legibilidade dos fatos relevantes no brasil, Revista de Administração Contemporânea-RAC Electronica 3(1): 142–159.

Souza, M. and Vieira, R. (2012). Sentiment analysis on twitter data for portuguese language, Proceedings of the 10th International Conference on Computational Processing of the Portuguese Language, PROPOR’12, Springer-Verlag, Berlin, Heidelberg, pp. 241–247. URL: http://dx.doi.org/10.1007/978-3-642-28885-2 _28.

Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock market, The Journal of finance 62(3): 1139–1168.