Seleção dos fatores de risco nas políticas de seguro de automóveis: uma maneira de aprimorar os lucros das companhias de seguro

ID:
39051
Resumo:
Objetivo – o objetivo deste trabalho é testar a validade do uso de níveis “bonus-malus” (BM) para classificar satisfatoriamente os segurados. Método – A fim de alcançar o objetivo proposto e mostrar a evidência empírica, um método de inteligência artificial, a teoria de Rough Set, foi aplicado. Resultados – A evidência empírica mostra que os fatores de risco comuns empregados pela companhia de seguros são boas variáveis explicativas para classificar políticas dos segurados. Além disso, a variável do nível de BM aumenta ligeiramente o poder explicativo dos fatores de risco a priori. Implicações práticas – Para aumentar a capacidade de previsão do nível de BM, questionários psicológicos poderiam ser usados para medir as características ocultas dos segurados. Contribuições – A principal contribuição é que a metodologia utilizada para realizar a pesquisa, teoria de Rough Set, não foi ainda aplicada a esse problema.
Citação ABNT:
VARGAS, M. J. S.; MIÑANO, M. D. M. C.; EZAMA, D. P. Seleção dos fatores de risco nas políticas de seguro de automóveis: uma maneira de aprimorar os lucros das companhias de seguro . Revista Brasileira de Gestão de Negócios, v. 17, n. 57, p. 1228-1245, 2015.
Citação APA:
Vargas, M. J. S., Miñano, M. D. M. C., & Ezama, D. P. (2015). Seleção dos fatores de risco nas políticas de seguro de automóveis: uma maneira de aprimorar os lucros das companhias de seguro . Revista Brasileira de Gestão de Negócios, 17(57), 1228-1245.
DOI:
10.7819/rbgn.v17i57.1741
Link Permanente:
https://www.spell.org.br/documentos/ver/39051/selecao-dos-fatores-de-risco-nas--politicas-de-seguro-de-automoveis---uma-maneira-de-aprimorar-os-lucros-das-companhias-de-seguro-/i/pt-br
Tipo de documento:
Artigo
Idioma:
Português
Referências:
Åberg, L.; Rimmö, P. A. (1998). Dimensions of aberrant driver behavior. Ergonomics, 41(1), 39-56.

Ahn, B. S.; Cho, S. S.; Kim, C. Y. (2000). The integrated methodology rough set theory and artificial neural network for business failure prediction. Expert Systems with Applications, 18(2), 65-74.

Arvidsson, S. (2010). Does private information affect the insurance risk? Working paper. The Geneva Association, 396, 2010. Retrieved from http://www.transportportal.se/SWoPEc/Essay_1_ Arvidsson_Does_private_information.pdf.

Bazan, J.; Nguyen, H. S.; Nguyen, S. H.; Synak, P.; Wróblewski, J. (2000). Rough set algorithms in classification problem. In L. Polkowski, S. Tsumoto, & T. Y. Lin (Eds.), Rough set methods and applications. (pp. 49-88). New York: PhysicaVerlag.

Beynon, M. J.; Peel, M. J. (2001). Variable precision rough set theory and data discrimination: An application to corporate failure prediction. OMEGA: The International Journal of Management Science, 29(6), 561-576.

Bousoño, C.; Heras, A.; Tolmos, P. (2008). Factores de riesgo y cálculo de primas mediante técnicas de aprendizaje. Madrid, España: Ed. MAPFRE.

Brockett P.; Cooper, W.; Golden, L.; Pitaktong, U. (1994). A neural network method for obtaining an early warning of insurer insolvency. The Journal of Risk and Insurance, 61(3), 402-424.

Brockett, P.; Golden, L.; Jang, J.; Yang. C. (2006). A comparison of neural network, statistical methods, and variable choice for life insurers’ financial distress prediction. The Journal of Risk and Insurance, 73(3), 397-419.

Costa, P. T.; McCrae, R. R. (1992). NEO PI-R professional manual. Odessa, FL: Psychological Assessment Resources.

D’Arcy, S. (2005). Predictive modeling in automobile insurance: A preliminary analysis. Working Paper, 302. World Risk and Insurance Economics Congress, August, Salt Lake City. Retrieved from http://business.illinois.edu/ormir/Predictive%20Modeling%20in%20Automobile%20Insurance%207-1-05(PDF).pdf.

Denuit, M.; Maréchal, X.; Pitrebois, S.; Walhin, J. F. (2007). Index, in actuarial modeling of claim counts: Risk classification, credibility and bonus-malus systems. Chichester, UK: John Wiley & Sons.

Díaz, Z.; Segovia, M. J.; Fernández, J.; Pozo, E. (2005). Machine learning and statistical techniques: An application to the prediction of insolvency in Spanish non-life insurance companies. The International Journal of Digital Accounting Research, 5(9), 1-45. Retrieved from http://www.uhu.es/ijdar/10.4192/1577-8517-v5_1.pdf.

Dimitras, A.; Slowinski, R.; Susmaga, R.; Zopounidis, C. (1999). Business failure prediction using Rough Sets. European Journal of Operational Research, 114(2), 263-280.

Dionne, G.; Ghali, O. (2005). The bonusmalus system in Tunisia: An empirical Evaluation. Journal of Risk and Insurance, 72(4), 609-633.

Ebanks, B.; Karwowski, W.; Ostaszewski, K. (1992). Application of measures of fuzziness to risk classification in insurance. Paper presented at Forth International Conference on Computing and Information ICCI’92, Toronto.

Forward, S. (2008). Driving violations: Investigating forms of irrational rationality. Uppsala: Universitetsbiblioteket. Retrieved from http://uu.diva-portal.org/smash/get/diva2:172720/FULLTEXT01.

Glendon, A. I.; Dorn, L.; Davies, D. R.; Matthews, G.; Taylor, R. G. (1996). Age and gender differences in perceived accident likelihood and driver competences. Risk Analysis, 16(6), 755-762. doi: 10.1111/j.1539-6924.1996.tb00826.x

Goh, C.; Law, R. (2003). Incorporating the rough sets theory into travel demand analysis. Tourism Management, 24(5), 511-517.

Greco, S.; Matarazzo, B.; Slowinski, R. (1998). A new rough set approach to evaluation of bankruptcy risk. In C. Zopounidis (Ed.), New operational tools in the management of financial risks. (pp. 121-136). Dordrecht: Kluwer Academic Publishers.

Greco, S.; Matarazzo, B.; Slowinski, R. (2001). Rough sets theory for multicriteria decision analysis. European Journal of Operational Research, 129(1), 1-47.

Gulian, E.; Matthews, G.; Glendon, A. I.; Davies, D. R.; Debney, L. M. (1989). Dimensions of driver stress. Ergonomics, 32(6), 585-602.

Gulliver, P.; Begg, D. (2007). Personality factors as predictors of persistent risky driving behavior and crash involvement among young adults. Injury Prevention, 13(6) 376-381.

Heras, A.; Vilar, J. L.; Gil, J. A. (2002). Asymptotic fairness of Bonus- Malus systems and Optimal scales premiums. The Geneva Papers on risk and Insurance Theory, 27(1), 61-82.

Hey, J. (1985). No claim bonus? The Geneva Papers on risk and Insurance, 10(36), 209-228.

Horgby, P. J. (1998). Risk classification by fuzzy inference. The Geneva Papers on Risk and Insurance Theory, 23(1), 63-82.

International Monetary Fund. (2011). World economic outlook database. Retrieved from www.imf.org.

Iversen, H. (2004). Risk-taking attitudes and risky driving behavior. Transportation Research Part F, 7(3), 135-150.

Johnson, J. (2006). Can complexity help us better understand risk? Risk Management, 8(4), 227-267.

Kramer, B. (1997). N.E.W.S.: A model for the evaluation of non-life insurance companies. European Journal of Operational Research, 98(2), 419-430.

Laitinen, E. K. (1992). Prediction of failure of a newly founded firm. Journal of Business Venturing, 7(4), 323-340.

Lemaire, J. (1988). A comparative analysis of most European and Japanese Bonus-malus Systems. Journal of Risk and Insurance, 55(4), 660-681.

Lemaire, J. (1990). Fuzzy insurance. ASTIN Bulletin, 20(1), 33-55.

Lemaire, J. (1995). Bonus-malus systems in automobile insurance. Boston: Kluwert Academic Publisher.

Martinez de Lejarza Esparducer, I. (1996). Forecasting company failure: Neural approach versus discriminant analysis: An application to Spanish insurance companies of the 80´s. International Conference on Artificial Intelligence in Accounting, Finance and Tax, Punta Umbria (Huelva), Spain, 2.

Matthews, G.; Dorn, L.; Glendon, A. (1991). Personality correlates of driver stress. Personality and Individual Differences, 12(6), 535-549.

McKee, T. (2000). Developing a bankruptcy prediction model via rough sets theory. International Journal of Intelligent Systems in Accounting. Finance and Management, 14(3), 159-173.

Nordfjaern, T.; Simsekoglu, O.; Rundmo, T. (2012). A comparison of road traffic culture, risk assessment and speeding predictors between Norway and Turkey. Risk Management, 14(3), 202-221.

Nurmi, H.; Kacprzyk, J.; Fedrizzi, M. (1996). Probabilistic, fuzzy and rough concepts in social choice. European Journal of Operational Research, 95(2), 264-277.

Park, S.; Lemaire, J, & Chua, C.T. (2009). Is the design of Bonus-Malus Systems influenced by insurance maturity or national culture? Evidence from Asia. The Geneva Papers, 35(S1), 7-27.

Pawlak, Z. (1991). Rough sets: Theoretical aspects of reasoning about data. Dordrecht: Kluwert Academic Publishers.

Pawlak, Z.; Grzymala-Busse, J.; Slowinski, R.; Ziarko, W. (1995). Rough Sets. Communications of the ACM, 38(11), 89-97. Retrieved from http://dl.acm.org/ft_gateway.cfm?id=277421&ftid=17537&dwn=1&CFID=220789019&CFTOKEN=72446287.

Pitrebois, S.; Denuit, M.; Walhin, J. F. (2006). Multi-event Bonus-malus scales. The Journal of Risk and Insurance, 73(3) 517-528.

PwC. (2012). The five keys to the industry. Retrieved from http://www.pwc.es/en/financieroseguros/claves-sector-seguros.jhtml.

Resende, P. C.; Jr, & Guimãres, T. (2012). Inovação em serviços: O estado da arte e uma proposta de agenda de pesquisa. Revista Brasileira de Gestão de Negócios, 14(44), 293-313.

Richadeau, D. (1999). Automobile insurance contracts and risk of accident: An empirical test using French individual data. The Geneva Papers on Risk and Insurance Theory, 24(1), 97-114.

Salcedo Sanz, S.; Fernández Villacañas, J. L.; Segovia Vargas M. J.; Bousoño Calzón, C. (2005). Genetic programming for the prediction of insolvency in non-life insurance companies. Computers and Operations Research, 32(4), 749-765.

Salcedo Sanz, S.; Prado Cumplido, M.; Segovia Vargas, M. J.; Perez Cruz, F.; Bousoño Calzón, C. (2004). Feature selection methods involving Support Vector Machines for prediction of insolvency in non-life insurance companies. Intelligent Systems in Accounting, Finance and Management, 12(4), 261-281.

Sanchís, A.; Segovia, M. J.; Gil, J. A.; Heras, A.; Vilar, J. L. (2007). Rough Sets and the Role of Monetary Policy in Financial Stability (Macroeconomic Problem) and the Prediction of Insolvency in the Insurance Sector (Microeconomic Problem). European Journal of Operational Research, 181(3), 1554-1573.

Schwebel, D. C.; Severson, J.; Ball, K. K.; Rizzo, M. (2006). Individual difference factors in risky driving: The roles of anger/hostility, conscientiousness, and sensation-seeking. Accident Analysis and Prevention, 38(4), 801-810.

Segovia-González, M. M.; Contreras, I.; Mar-Molinero, C. A. (2009). DEA analysis of risk, cost, and revenues in insurance. Journal of Operational Research Society, 60(11), 1483-1494.

Segovia-Vargas M. J.; Salcedo-Sanz, S.; Bousoño-Calzón, C. (2004). Prediction of Insolvency in non-life insurance companies using support vector machines and genetic algorithms.