Economic and Financial Determinants of Bankrupcy: Evidence from Ecuador’s Private Banks and the Impact of Dollarization on Financial Fragility Outros Idiomas

ID:
60872
Resumo:
Purpose – An econometric model is established to explain bankruptcy in Ecuadorian banks. The utility of combining macroeconomic, financial, and idiosyncratic determinants to explain bankruptcy is empirically demonstrated. Design/methodology/approach – The cross-sectional analysis includes 24 banks between 1996 and 2016. Bankruptcy is considered as a rare event. Findings – Even in adverse macroeconomic conditions, the main factor explaining bankruptcy is lax administration. Also, those banks with higher levels of indebtedness with respect to their capital levels are more susceptible to bankruptcy. Higher levels of spread and lower inflation are associated with lower levels of bankruptcy. Ceteris paribus, after dollarization the bankruptcy probability decreases and the effective management of each bank becomes a relevant factor to explain bankruptcy. Originality/value – Different determinants are combined in order to produce predictive models with practical value and macro-dependent dynamics that are relevant for stress tests. There is empirical evidence that the change in the monetary system has helped to stabilize the financial system. The problem of having a small sample and rare events is evident and adequately addressed.
Citação ABNT:
UQUILLAS, A.; FLORES, F. Economic and Financial Determinants of Bankrupcy: Evidence from Ecuador’s Private Banks and the Impact of Dollarization on Financial Fragility. Revista Brasileira de Gestão de Negócios, v. 22, n. 4, p. 949-972, 2020.
Citação APA:
Uquillas, A., & Flores, F. (2020). Economic and Financial Determinants of Bankrupcy: Evidence from Ecuador’s Private Banks and the Impact of Dollarization on Financial Fragility. Revista Brasileira de Gestão de Negócios, 22(4), 949-972.
DOI:
https://doi.org/10.7819/rbgn.v22i4.4080
Link Permanente:
https://www.spell.org.br/documentos/ver/60872/economic-and-financial-determinants-of-bankrupcy--evidence-from-ecuador---s-private-banks-and-the-impact-of-dollarization-on-financial-fragility/i/pt-br
Tipo de documento:
Artigo
Idioma:
Inglês
Referências:
Alaka, H. A.; Oyedele, L. O.; Owolabi, H. A.; Ajayi, S. O.; Bilal, M.; Akinade, O. O. (2017). Methodological approach of construction business failure prediction studies: A review. Construction Management and Economics, 34(11), 808-842.

Alaka, H. A.; Oyedele, L. O.; Owolabi, H. A.; Oyedele, A. A.; Akinade, O. O.; Bilal, M. (2018). Critical factors for insolvency prediction: Towards a theoretical model for the construction industry. International Journal of Construction Management, 17(1), 25-49.

Altman, E. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of FINANCE, XXIII, 589-609.

Anderson, R. (2007). The Credit Scoring Toolkit: Theory and Practice for Retail Credit Risk Management and Decision Automation. Oxford University Press, USA: Oxford New York.

Arias, X. (2015). Estudio de Vulnerabilidad Financiera. Superintendencia de Bancos y Seuros del Ecuador. Subdirección de Estudios SBE.

Ayala, R. (1999). Modelos de Alerta Temprana para Crisis Financieras.El Caso Ecuatoriano: 1994-1997. Banco Central del Ecuador. Notas Técnicas, (51), 1-33.

Banco Central del Ecuador BCE. (2008). Memorias anuales 1980-2007. Quito: Estadísticas Banco Central del Ecuador.

Bedri Kamil Onur Tas.; Selahattin Togay. (2014). Efectos de la dolarización oficial en una pequeña economía abierta: el caso de Ecuador. Investigación Económica, v. 73, n. 290, p. 51-86.

Calvo G.A. (2001). Capital Markets and the Exchange Rate with Special Reference to the Dollarization Debate in Latin America. Journal of Money, Credit, and Banking, 33(2), 312-334

Caprio, G.; Klingebiel, D. (2003). Episodes of Systemic and Borderline Financial Crises.

Demirguc-Kunt, A.; Detragiache, E. (1997). The Determinants of Banking Crises: Evidence from Developing and Developed Countries. International Monetary Found. Working paper. No. WP/97/106.

Firth, D. (1993). Bias Reduction of Maximum Likelihood Estimates. Biometrika, 80(1), 27-38.

Fischer, S. (1993). The Role of Macroeconomic Factors in Growth. Journal of Monetary Economics, 32(3), 485-512.

Foster, D.; Stine, R. (2004). Variable Selection in Data Mining Building a Predictive Model for Bankruptcy. Journal of the American Statistical Association, 99(466).

Gao, S, Shen, J. (2007):Asymptotic properties of a double penalized maximum likelihood estimator in logistic regression. In: Statistics and Probability Letters, n. 77, p. 925-930

González-Hermosillo, B. (1999). Indicadores de alerta de las crisis bancarias. Finanzas y Desarrollo, p. 37-43.

Greene, W. (2012). Econometric Analysis. 7 ed. New York, USA: PEARSON.

Hernández, M.; Wilson, N. (2013). Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. International Review of Financial Analysis, n. 30, p. 394-419.

Horta, I. M. ; Camanho, A. S. (2013) Company failure prediction in the construction industry. Expert Systems with Applications, 40(16), 62-53. 7.10.1016/j.eswa.2013.05.045

Huang, S. C., Tang, Y. C., Lee, C. W.; Chang, M. J. (2012). Kernel local Fisher discriminant analysis based manifold-regularized SVM model for financial distress predictions. Expert Systems with Applications, 39(3), 3855-3861.

Jeong, C.; Min, J. H.; Kim, M. S. (2012). A tuning method for the architecture of neural network models incorporating GAM and GA as applied to bankruptcy prediction. Expert Systems with Applications, 39(3), 3650-3658

Kaminsky, G.; Reinhart, C. (1999). The American Economic Review. https://www.macroeconomics.tu-berlin.de/fileadmin/fg124/financialcrises/literature./Kaminsky___Reinhart__1999_.pdf

King, G.; Zeng, L. (2001). Logistic Regression in Rare Events Data. Political Analysis, 9(2), 137-163.

Korobkin, D. R. (1991). Rehabilitating values: A jurisprudence of bankruptcy. Columbia Law Review, v. 91, p. 7-17.

Lafuente, D. (2001). La crisis de los bancos privados en el Ecuador: Una aplicación de los modelos de duración. Banco Central del Ecuador. Cuestiones Económicas, 17(3), 7-37.

Lee, K.; Booth, D.; Alam, P. (2005). A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms. Expert Systems with Applications, 29(1), 1-16.

Minda A. (2005). Full Dollarization: A last resort solution to financial instability in emerging countries? The European Journal of Development Research, 17(2), 289-316.

Mintzberg, H. (1987). The strategy concept I: Five Ps for strategy. California management review, 30(1), 11-24

Mselmi, N.; Lahiani, A.; Hamza, T. (2017). Financial distress prediction: The case of French small and medium sized firms. International Review of Financial Analysis, n. 50, p. 67-80.

Naranjo Chiriboga, M. (2018). Incidencia de la dolarización sobre la economía ecuatoriana, 2000 2015. Semestre Económico, 21(46), 95-122. https://doi.org./https://doi.org/10.22395/seec.v21n46a4

Naranjo, M. (2003). La dolarización de la economía del Ecuador: tres años después. Cuestiones Económicas, 19(1-3), 115-155.

Oliveira, A.; Vitorino, F.; Brandao, E. (2015). Bank Failure and the Financial Crisis: An Econometric Analysis of US Banks. SSRN.

Páez, L. (2014). Vulnerabilidades de sistemas bancarios en una economía dolarizada, caso Ecuador: 2003-2012. Banco Central del Eucador. Cuestiones Económicas, p. 43-96.

Peduzzi, P.; Concato, J.; Kemper, E.; Holford T. R.; Feinstein, A. R. (1996): A Simulation Study of the Number of Events per Variable in Logistic Regression Analysis. In: Journal of Clinical Epidemiology, v. 49, p. 1373-1379.

Rojas-Suarez, L. (1998). Early Warning Indicators of Banking Crises: What Works for Emerging Markets?with applications to Latin America. Manuscrito, Banco Interamericano de Desarrollo. https://www.researchgate.net/publication/260634733_Early_Warning_Indicators_of_Banking_Crises_What_Works_for_Emerging_Markets_With_Applications_to_Latin_America

Tas, B. K. O.; Togay, S. (2014). Efectos de la dolarización oficial en una pequeña economía abierta: El caso de Ecuador. Investigación Económica, 73(290), 51-86.

Tseng, F. M.; Hu, Y. C. (2010). Comparing four bankruptcy prediction models: Logit, quadratic interval logit, neural and fuzzy neural networks. Expert Systems with Applications, 37(3), 1846-1853.

Uquillas A, González C. (2018). Determinantes macro y microeconómicos para pruebas de tensión de riesgo de crédito: un estudio comparativo entre Ecuador y Colombia basado en la tasa de morosidad. Ensayos sobre Política Económica, v. 35, n. 84.

Williams, R. (2017). Analyzing Rare Events with Logistic Regression. Notre Dame. https://www.studocu.com./en-us/document/university-of-notre-dame/categoricaldata-analysis/lecture-notes/analyzing-rare-events-withlogistic-regression/1194074/view

Wooldridge, J. (2010). Econometric Analysis of Cross Section and Panel Data. 2 ed. The MIT Press.

Yang, Z.; You, W.; Ji, G. (2011). Using partial least squares and support vector machines for bankruptcy prediction. Expert Systems with Applications, 38(7), 8336-8342.

Zhang, Y.; Shuihua, W.; Genlin, J. (2013), A rule-based model for bankruptcy prediction based on an improved genetic ant colony algorithm. Mathematical Problems in Engineering, 2013, p. 1-10.

Zhou, L.; Lai, K.; Yen, J. (2014), Bankruptcy Prediction Using SVM Models with a New Approach Combine Features Selection and Parameters Optimization. International Journal of Systems Science, 2014, p. 1-28.